Abd-Elhakim YM, Moustafa GG, Hashem MM, Ali HA, Abo-El-Sooud K, El-Metwally AE. (2019). Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-alpha, TGFbeta-1, fibronectin, and caspase-3 genes. Environ Sci Pollut Res Int 26:12368-12378. https://pubmed.ncbi.nlm.nih.gov/30847814/
Abd-Elhakim, Y.M., Behairy, A., Hashem, M.M.M. et al. Toll-like receptors and nuclear factor kappa B signaling pathway involvement in hepatorenal oxidative damage induced by some food preservatives in rats. Sci Rep 13, 5938 (2023). https://doi.org/10.1038/s41598-023-32887-9
Acero et al., 1998. Occupational asthma and food allergy due to Carmine. Allergy, 53, 897–901.
Adler GK, Hornik ES, Murray G, Bhandari S, Yadav Y, Heydarpour M, Basu R, Garg R, Tirosh A. Acute effects of the food preservative propionic acid on glucose metabolism in humans. BMJ Open Diabetes Res Care. 2021 Jul;9(1):e002336.
Aguayo-Guerrero JA, Méndez-García LA, Manjarrez-Reyna AN, Esquivel-Velázquez M, León-Cabrera S, Meléndez G, Zambrano E, Ramos-Martínez E, Fragoso JM, Briones-Garduño JC, Escobedo G (2023). Newborns from Mothers Who Intensely Consumed Sucralose during Pregnancy Are Heavier and Exhibit Markers of Metabolic Alteration and Low-Grade Systemic Inflammation: A Cross-Sectional, Prospective Study. Biomedicines. 2023 Feb 21;11(3):650. doi: 10.3390/biomedicines11030650. PMID: 36979631; PMCID: PMC10045555. https://pubmed.ncbi.nlm.nih.gov/36979631/
Ahangari H, Bahramian B, Khezerlou A, Tavassoli M, Kiani-Salmi N, Tarhriz V, Ehsani A. Association between monosodium glutamate consumption with changes in gut microbiota and related metabolic dysbiosis-A systematic review. Food Sci Nutr. 2024 Apr 29;12(8):5285-5295. doi: 10.1002/fsn3.4198. PMID: 39139924; PMCID: PMC11317663. https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4198
Ali Noorafshan, Maedeh Hashemi, Saied Karbalay-Doust, Fatemeh Karimi, High dose Allura Red, rather than the ADI dose, induces structural and behavioral changes in the medial prefrontal cortex of rats and taurine can protect it, Acta Histochemica, Volume 120, Issue 6, 2018 https://doi.org/10.1016/j.acthis.2018.07.004
Ali, M. Y., Hassan, G. M., Hassan, A. M. S., Mohamed, Z. A., & Ramadan, M. F. (2019). In vivo genotoxicity assessment of sunset yellow and sodium benzoate in female rats. Drug and chemical toxicology, 1-10. https://pubmed.ncbi.nlm.nih.gov/30208729/
Alofe O, Kisanga E, Inayat-Hussain SH, Fukumura M, Garcia-Milian R, Perera L, Vasiliou V, Whirledge S (2019). Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. Environ Int. 2019 Oct;131:104969. doi: 10.1016/j.envint.2019.104969. Epub 2019 Jul 13. PMID: 31310931; PMCID: PMC6728168. https://pubmed.ncbi.nlm.nih.gov/31310931/
Amadasi A, Mozzarelli A, Meda C, Maggi A and Cozzini P, 2009. Identification of Xenoestrogens in Food Additives by an Integrated in Silico and in vitro Approach. Chemical Research in Toxicology, 22, 52-63 https://pubmed.ncbi.nlm.nih.gov/19063592/
American Society of Health-System Pharmacists 2014; Book Drug Information 2014. Bethesda, MD. 2014, p. 2777\n
Amin KA, Abdel Hameid H, Abd Elsttar AH. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol 2010; 48: 2994–2999. https://pubmed.ncbi.nlm.nih.gov/20678534/
Anbara, H., Kian, M., Darya, G. H., & Sheibani, M. T. (2022). Long‐term intake of aspartame‐induced cardiovascular toxicity is reflected in altered histochemical parameters, evokes oxidative stress, and trigger P53‐dependent apoptosis in a mouse model. International Journal of Experimental Pathology, 103(6), 252-262. https://doi.org/10.1111/iep.12458
Anbara, H., Sheibani, M. T., & Razi, M. (2020). Long-term effect of aspartame on male reproductive system: Evidence for testicular histomorphometrics, Hsp70-2 protein expression and biochemical status. International journal of fertility & sterility, 14(2), 91. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382684/
Anbara, H., Sheibani, M. T., Razi, M., & Kian, M. (2021). Insight into the mechanism of aspartame‐induced toxicity in male reproductive system following long‐term consumption in mice model. Environmental toxicology, 36(2), 223-237. https://doi.org/10.1002/tox.23028
ANSES, 2005. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from the Commission related to Semicarbazide in foods (2005) https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2005.219
ANSES, 2008. Evaluation des risques sanitaires liés au dépassement des limites de qualité des bromates dans les eaux destinées à la consommation humaine. https://www.anses.fr/fr/content/fiche-20-evaluation-des-risques-sanitaires-lies-au-depassement-des-limites-de-qualite-des-0
ANSES, 2011. Étude de l’alimentation totale française 2 (EAT 2) Tome 2 - Résidus de pesticides, additifs, acrylamide, hydrocarbures aromatiques polycycliques. https://www.anses.fr/fr/system/files/PASER2006sa0361Ra2.pdf
ANSES, 2013. Avis de l'Anses en réponse à la consultation de l'Autorité Européenne de sécurité des aliments sur son projet d'avis concernant la réévaluation de l'aspartame (E951) en tant qu'additif alimentaire. Saisine n° 2013-SA-0016. https://www.anses.fr/fr/system/files/ERCA2013sa0016.pdf
ANSES, 2014. Foodborne exposure to aluminium https://www.anses.fr/en/content/foodborne-exposure-aluminium
ANSES, 2015. Avis du 19 novembre 2014 révisé le 9 janvier 2015 relatif à l’évaluation des bénéfices et des risques nutritionnels des édulcorants intenses. Saisine n°2011-SA-0161. https://www.anses.fr/fr/system/files/NUT2011sa0161Ra.pdf
ANSES, 2015. Avis relatif à l’évaluation des apports en vitamines et minéraux issus de l'alimentation non enrichie, de l’alimentation enrichie et des compléments alimentaires dans la population française : estimation des apports usuels, des prévalences d'inadéquation et des risques de dépassement des limites de sécurité. Saisine n°2012-SA-0142. https://www.anses.fr/fr/content/avis-de-lanses-relatif-%C3%A0-l%E2%80%99%C3%A9valuation-des-apports-en-vitamines-et-min%C3%A9raux-issus-de
ANSES, 2016. Avis sur les perturbateurs endocriniens (SNPE): l’ATBC (acétylcitrate de tributyle(n°CAS 77-90-7), le TBC (citratede tributyle, n° CAS 77-94-1), le BHT (hydroxytoluene butylé, n°CAS 128-37-0), l’acide téréphtalique (n° CAS 100-21-0), le méthyl salicylate (n°CAS 119-36-8) et l’iprodione (n° CAS 36734-19-7). https://www.anses.fr/fr/system/files/REACH2016RE0001.pdf
ANSES, 2017. Avis relatif à l’exposition alimentaire aux nanoparticules de dioxyde de titane.
ANSES, 2019. Avis de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif aux risques liés à l’ingestion de l’additif alimentaire E171.
ANSES, 2020. Collective expert report: Nanomaterials in food product https://www.anses.fr/en/content/nanomaterials-food-ansess-recommendations-improving-their-identification-and-better
ANSES, 2020. Rapport d’expertise collective, mai 2020. Nanomatériaux dans les produits destinés à l’alimentation. https://www.anses.fr/fr/system/files/ERCA2016SA0226Ra.pdf
ANSES, 2021. ANSES OPINION on a specific health risk assessment guide for nanomaterials in food products https://www.anses.fr/en/system/files/ERCA2016SA0226EN.pdf
ANSES, 2022. Évaluation des risques liés à la consommation de nitrates et nitrites. https://www.anses.fr/fr/content/r%C3%A9duire-l%E2%80%99exposition-aux-nitrites-et-aux-nitrates-dans-l%E2%80%99alimentation
Aouey et al. Silica Nanoparticles Induce Hepatotoxicity by Triggering Oxidative Damage, Apoptosis, and Bax-Bcl2 Signaling Pathway. Biol Trace Elem Res. 2021 Jun 10.
Arnold et al., 2012. Artificial food colors and attention-deficit/hyperactivity symptoms: conclusions to dye for. Neurotherapeutics, 9(3), 599-609. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441937/
Azad et al., 2017. Nonnutritive sweeteners and cardiometabolic health : a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Cmaj, 189(28), E929-E939. https://www.ncbi.nlm.nih.gov/pubmed/28716847
Azad, M. B., Archibald, A., Tomczyk, M. M., Head, A., Cheung, K. G., de Souza, R. J., ... & Dolinsky, V. W. (2020). Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells. International Journal of Obesity, 44(10), 2137-2148. https://doi.org/10.1038/s41366-020-0575-x
Baad‐Hansen et al. Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia. 2010 Jan;30(1):68-76.
Baldwin JL, Chou AH and Solomon WR, 1997. Popsicle-induced anaphylaxis due to Carmine dye allergy. Annals of Allergy, Asthma and Immunology, 79, 415–419.
Bandyopadhyay, A., Ghoshal, S., & Mukherjee, A. (2008). Genotoxicity testing of low-calorie sweeteners: aspartame, acesulfame-K, and saccharin. Drug and chemical toxicology, 31(4), 447-457. https://doi.org/10.1080/01480540802390270
Barakat, H.; Al-Roug, K.; Algonaiman, R.; Althwab, S.A.; Alfheeaid, H.A.; Alhomaid, R.M.; Almujaydil, M.S.; Bushnaq, T.; Ebeid, T.A (2023). Biological Assessment of Stevioside and Sucralose as Sucrose Substitutes for Diabetics on STZ-Induced Diabetes in Rats. Molecules 2023, 28, 940. https://doi.org/10.3390/molecules28030940
Barciela, P., Perez-Vazquez, A., & Prieto, M. A. (2023). Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation. Food and Chemical Toxicology, 178. https://doi.org/10.1016/j.fct.2023.113935
Beards, E., Tuohy, K., & Gibson, G. (2010). A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. British Journal of Nutrition, 104(5), 701-708.
Becker, S. L., Chiang, E., Plantinga, A., Carey, H. V., Suen, G., & Swoap, S. J. (2020). Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS microbiology ecology, 96(6), fiaa079. https://doi.org/10.1093/femsec/fiaa079
Beezhold, B. L., Johnston, C. S., & Nochta, K. A. (2014). Sodium benzoate–rich beverage consumption is associated with increased reporting of ADHD symptoms in college students: A pilot investigation. Journal of attention disorders, 18(3), 236-241. https://pubmed.ncbi.nlm.nih.gov/22538314/
Benard, Claudine et al. “Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation” PloS one vol. 5,1 e8666. 13 Jan. 2010. https://pmc.ncbi.nlm.nih.gov/articles/PMC2800179/
Bendig, P., Maier, L., & Vetter, W. (2012). Brominated vegetable oil in soft drinks–an underrated source of human organobromine intake. Food chemistry, 133(3), 678-682.
Bettini, S., Boutet-Robinet, E., Cartier, C., Coméra, C., Gaultier, E., Dupuy, J., ... & Thieriet, N. (2017). Food-grade TiO 2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports, 7, 40373.
BFR, 2019. Reducing aluminium intake can minimise potential health risks. https://www.bfr.bund.de/en/press_information/2019/45/reducing_aluminium_intake_can_minimise_potential_health_risks-243396.html
Bhattacharyya S, O-Sullivan I, Katyal S, Unterman T, Tobacman JK. Exposure to the common food additive carrageenan leads to glucose intolerance, insulin resistance and inhibition of insulin signalling in HepG2 cells and C57BL/6J mice. Diabetologia. 2012 Jan;55(1):194-203. https://pubmed.ncbi.nlm.nih.gov/22011715/
Bian et al., 2017. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One, 12(6), e0178426. https://pubmed.ncbi.nlm.nih.gov/28594855/
Bian X., Tu P., Chi L., Gao B., Ru H., Lu K. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol. 2017;107:530–539. https://www.sciencedirect.com/science/article/abs/pii/S0278691517302235
Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in physiology, 8, 487. - https://doi.org/10.3389/fphys.2017.00487
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Turroni F, Mancabelli L, Longhi G, Ventura M, Bussolati O. Amorphous silica nanoparticles and the human gut microbiota: a relationship with multiple implications. J Nanobiotechnology. (2024) Jan 30;22(1):45. doi: 10.1186/s12951-024-02305-x. PMID: 38291460; PMCID: PMC10826219. https://pubmed.ncbi.nlm.nih.gov/38291460/
Bondy, S. C. The Neurotoxicity of Environmental Aluminum Is Still an Issue. Neurotoxicology 2010, 31 (5), 575–581.
Boonnate et al., 2015. Monosodium glutamate dietary consumption decreases pancreatic β-cell mass in adult Wistar rats. PLoS One, 10(6), e0131595.
Bornemann, V., Werness, S. C., Buslinger, L., & Schiffman, S. S. (2018). Intestinal metabolism and bioaccumulation of sucralose in adipose tissue in the rat. Journal of Toxicology and Environmental Health, Part A. https://doi.org/10.1080/15287394.2018.1502560
Brand, W., van Kesteren, P. C. E., Peters, R. J. B., & Oomen, A. G. (2021). Issues currently complicating the risk assessment of synthetic amorphous silica (SAS) nanoparticles after oral exposure. Nanotoxicology, 15(7), 905–933. https://doi.org/10.1080/17435390.2021.1931724
Bridge-Comer, P. E., Vickers, M. H., Morton-Jones, J., Spada, A., Rong, J., & Reynolds, C. M. (2021). Impact of maternal intake of artificial sweetener, Acesulfame-K, on metabolic and reproductive health outcomes in male and female mouse offspring. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.745203
Bridge-Comer, P. E., Vickers, M. H., Morton-Jones, J., Spada, A., Rong, J., & Reynolds, C. M. (2022). Maternal intake of fructose or artificial sweetener during pregnancy and lactation has persistent effects on metabolic and reproductive health of dams post-weaning. Journal of Developmental Origins of Health and Disease, 1-8. https://doi.org/10.1017/S2040174422000022
Bueno-Hernández, N., Esquivel-Velázquez, M., Alcántara-Suárez, R., Gómez-Arauz, A. Y., Espinosa-Flores, A. J., de León-Barrera, K. L., ... & Meléndez, G. (2020). Chronic sucralose consumption induces elevation of serum insulin in young healthy adults: a randomized, double blind, controlled trial. Nutrition journal, 19(1), 1-12. https://doi.org/10.1186/s12937-020-00549-5
Bursley, J. K., & Rockwell, C. E. (2020). Nrf2-dependent and-independent effects of tBHQ in activated murine B cells. Food and Chemical Toxicology, 145, 111595.
Çadirci, K., Tozlu, Ö. Ö., Türkez, H., & Mardinoğlu, A. (2020). The in vitro cytotoxic, genotoxic, and oxidative damage potentials of the oral artificialsweetener aspartame on cultured human blood cells. Turkish Journal of Medical Sciences, 50(2), 448-454. https://pubmed.ncbi.nlm.nih.gov/32222132/
California State Assembly. (2024). AB 2316: Pupil nutrition: substances: prohibition (Chapter 914). California Legislative Information. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240AB2316
Calvo MS, Dunford EK, Uribarri J (2023). Industrial Use of Phosphate Food Additives: A Mechanism Linking Ultra-Processed Food Intake to Cardiorenal Disease Risk? Nutrients. 2023 Aug 9;15(16):3510. doi: 10.3390/nu15163510. PMID: 37630701; PMCID: PMC10459924. https://pubmed.ncbi.nlm.nih.gov/37630701/
Calvo MS, Tucker KL, 2013. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health? Ann N Y Acad Sci. 2013 Oct;1301:29-35. https://pubmed.ncbi.nlm.nih.gov/24472074/
Calvo MS, Uribarri J, 2013. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am J Clin Nutr. 2013 Jul;98(1):6-15. doi: 10.3945/ajcn.112.053934. Epub 2013 May 29. https://pubmed.ncbi.nlm.nih.gov/23719553/
Calvo, M. S., Sherman, R. A., & Uribarri, J. (2019). Dietary Phosphate and the Forgotten Kidney Patient: A Critical Need for FDA Regulatory Action. American Journal of Kidney Diseases, 73(4), 542–551. https://doi.org/10.1053/j.ajkd.2018.11.004
Carocho, M., Morales, P., & Ferreira, I. C. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food and Chemical Toxicology, 107, 302-317. https://pubmed.ncbi.nlm.nih.gov/28689062/
Cecchin, Mireille. \Domaines d'application des sucroesters et sucroglycérides.\ Rapport de recherche bibliographique. DESS Ingénierie Documentaire, ENSSIB, Université Claude Bernard Lyon 1, 2000-2001, sous la direction de Melle Gagnaire, Mr Bouchu, Mr Queneau. Laboratoire de sucrochimie CNRS-BEGHIN-SAY, Villeurbanne. http://enssibal.enssib.fr/bibliotheque/documents/dessid/rrbcecchin.pdf
Center for Science in the Public Interest. Food Dyes: A Rainbow of Risks. CSPI, 2010 https://www.cspinet.org/resource/food-dyes-rainbow-risks
Chang AR et al., 2013. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr. 2014 Feb; 99(2): 320–327. Published online 2013 Nov 13. https://pubmed.ncbi.nlm.nih.gov/24225358/
Chassaing et al. (2017). Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut, 66(8), 1414-1427. https://pubmed.ncbi.nlm.nih.gov/28325746/
Chassaing, B., Koren, O., Goodrich, J. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015). https://doi.org/10.1038/nature14232
Chazelas E, Pierre F, Druesne-Pecollo N, et al. Nitrites and nitrates from food additives and natural sources and cancer risk: results from the NutriNet-Santé cohort. Int J Epidemiol. https://pubmed.ncbi.nlm.nih.gov/35303088/
Chazelas, E., Druesne-Pecollo, N., Esseddik, Y. et al. Exposure to food additive mixtures in 106,000 French adults from the NutriNet-Santé cohort. Sci Rep 11, 19680 (2021). https://doi.org/10.1038/s41598-021-98496-6
Chen, Y. C., Yeh, Y. C., Lin, Y. F., Au, H. K., Hsia, S. M., Chen, Y. H., & Hsieh, R. H. (2022). Aspartame Consumption, Mitochondrial Disorder-Induced Impaired Ovarian Function, and Infertility Risk. International journal of molecular sciences, 23(21), 12740. https://www.mdpi.com/1422-0067/23/21/12740
Chen, Z., Chen, G., Zhou, K., Zhang, P., Ren, X., & Mei, X. (2019). Toxicity of food sweetener-sodium cyclamate on osteoblasts cells. Biochemical and biophysical research communications, 508(2), 507-511. https://doi.org/10.1016/j.bbrc.2018.11.172
Chi, L.; Bian, X.; Gao, B.; Tu, P.; Lai, Y.; Ru, H.; Lu, K. Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules 2018, 23, 367. https://doi.org/10.3390/molecules23020367
Chiang, Y. F., Chen, H. Y., Lai, Y. H., Ali, M., Chen, Y. C., & Hsia, S. M. (2022). Consumption of Artificial Sweetener Acesulfame Potassium Increases Preterm Risk and Uterine Contraction with Calcium Influx Increased via Myosin Light Chain Kinase–Myosin Light Chain 20 Related Signaling Pathway. Molecular Nutrition & Food Research, 66(20), 2200298. https://doi.org/10.1002/mnfr.202200298
Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental Pollutants as Risk Factors for Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Front Cell Neurosci 2015, 9. https://pmc.ncbi.nlm.nih.gov/articles/PMC4392704/
Clemmensen, O., & Hjorth, N. (1982). Perioral contact urticaria from sorbic acid and benzoic acid in a salad dressing. Contact dermatitis, 8(1), 1-6.
Code of Federal regulations (2016). Mono- and diglycerides. https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-184/subpart-B/section-184.1505
Code of Federal Regulations (2024). Food Preservatives. https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172/subpart-B
Cohen SM, Ito N. A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol. 2002 Sep;32(5):413-44. Review. https://pubmed.ncbi.nlm.nih.gov/12389870/
Commission Delegated Regulation (EU) 2024/2512 of 17 April 2024 amending Annex II to Regulation (EU) No 1169/2011 of the European Parliament and of the Council on the provision of food information to consumers, as regards behenic acid from mustard seeds to be used in the manufacturing of certain emulsifiers https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL_202402512
Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0231
Commission Regulation (EU) No 257/2010 of 25 March 2010 setting up a programme for the re-evaluation of approved food additives in accordance with Regulation (EC) No 1333/2008 of the European Parliament and of the Council on food additives https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010R0257
Commission Regulation (EU) No 380/2012 of 3 May 2012 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the conditions of use and the use levels for aluminium-containing food additives https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32012R0380
Cong, W. N., Wang, R., Cai, H., Daimon, C. M., Scheibye-Knudsen, M., Bohr, V. A., ... & Martin, B. (2013). Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice. PLoS One, 8(8), e70257. https://doi.org/10.1371/journal.pone.0070257
Cornu, R., Chrétien, C., Pellequer, Y., Martin, H., & Béduneau, A. (2020). Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Archives of Toxicology, 94(4), 1191-1202.
Crowe W, Elliott CT, Green BD. A Review of the In Vivo Evidence Investigating the Role of Nitrite Exposure from Processed Meat Consumption in the Development of Colorectal Cancer. Nutrients. 2019 Nov 5;11(11):2673. https://pubmed.ncbi.nlm.nih.gov/31694233/
Csáki, K. F. (2011). Synthetic surfactant food additives can cause intestinal barrier dysfunction. Medical hypotheses, 76(5), 676-681. https://pubmed.ncbi.nlm.nih.gov/21300443/
CSPCI, Color additive petition pursuant to 21 U.S.C. §§ 379e, 721(b)(1) to remove FD&C Red No. 3 from the permanent list of color additives approved for use in food and dietary supplements, 21 C.F.R. § 74.303, and for use in ingested drugs\n
CSPI, 2011. Petition to bar the use of caramel colorings produced with ammonia and containing certain carcinogens.
CSPI, 2012. Center for Science in the Public Interest. Lab tests find Carcinogen in regular diet coke and pepsi (CSPI)
CWG - Report CWG Additives 5 and 6 June 2024 - WGA 24/03/02 Use of additives on fresh fruit and vegetables (2020-7,16,18,19,20, 2021-03, 2022-2,3, 2023-4,5,6,7).\n https://www.row-minvws.nl/documenten/verslag/2024/06/05/verslag-cwg-additieven-5-en-6-juni-2024
Dai, X., Guo, Z., Chen, D., Li, L., Song, X., Liu, T., ... & Cao, H. (2020). Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood. Gut Microbes, 11(4), 1043-1063. https://pubmed.ncbi.nlm.nih.gov/32228300/
Darbre, P. D. Aluminium, Antiperspirants and Breast Cancer. J. Inorg. Biochem. 2005, 99 (9), 1912–1919.
Davalli et al., 2012. The potential role of glutamate in the current diabetes epidemic. Acta diabetologica, 49(3), 167-183.
de la Garza, A. L., Romero-Delgado, B., Martínez-Tamez, A. M., Cárdenas-Tueme, M., Camacho-Zamora, B. D., Matta-Yee-Chig, D., ... & Camacho-Morales, A. (2022). Maternal sweeteners intake modulates gut microbiota and exacerbates learning and memory processes in adult male offspring. Frontiers in Pediatrics, 1038. https://doi.org/10.3389/fped.2021.746437
Debras C, Chazelas E, Sellem L, Porcher R, Druesne-Pecollo N, Esseddik Y et al. Artificial sweeteners and risk of cardiovascular diseases: results from the prospective NutriNet-Santé cohort BMJ 2022; 378 :e071204. https://doi.org/10.1136/bmj-2022-071204
Debras C, Chazelas E, Srour B, Druesne-Pecollo N, Esseddik Y, Szabo de Edelenyi F, Agaësse C, De Sa A, Lutchia R, Gigandet S, Huybrechts I, Julia C, Kesse-Guyot E, Allès B, Andreeva VA, Galan P, Hercberg S, Deschasaux-Tanguy M, Touvier M. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLoS Med. 2022 Mar 24;19(3):e1003950. https://doi.org/10.1371/journal.pmed.1003950
Debras C., Deschasaux-Tanguy M., Chazelas E, Sellem L., Druesne-Pecollo N., Esseddik Y., Szabo de Edelenyi F., Agaësse C., De Sa A., Lutchia R., Julia C., Kesse-Guyot E., Allès B., Galan P., Hercberg S., Huybrechts I., Cosson E., Tatulashvili S., Srour B., Touvier M. Artificial Sweeteners and Risk of Type 2 Diabetes in the Prospective NutriNet-Santé Cohort. Diabetes Care. 2023 Sep 1;46(9):1681-1690. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465821/
Del Pozo S, Gómez-Martínez S, Díaz LE, Nova E, Urrialde R, Marcos A. Potential Effects of Sucralose and Saccharin on Gut Microbiota: A Review. Nutrients. 2022 Apr 18;14(8):1682. https://pubmed.ncbi.nlm.nih.gov/35458244/
Demircigil N, Gul M, Gokturk N, Kustepe EK, Bag HG, Erdemli ME. Thymoquinone played a protective role against tartrazine-induced hepatotoxicity. Iran J Basic Med Sci. 2023 Jan;26(1):99-106. doi: 10.22038/IJBMS.2022.67341.14763. PMID: 36594061; PMCID: PMC9790050. https://pubmed.ncbi.nlm.nih.gov/36594061/
DiCello MC, Myc A, Baker JR Jr and Baldwin JL, 1999. Anaphylaxis after ingestion of Carmine colored foods: Two case reports and a review of the literature. Allergy and Asthma Proceedings, 20, 377–382
Diezi M., Buclin T., Diezi J., Additifs alimentaires et troubles de l’attention/hyperactivité chez l’enfant, Formation Continue - Paediatrica, vol. 22 n. 5 (2011) https://www.paediatrieschweiz.ch/fr/additifs-alimentaires-et-troubles-de-lattention-hyperactivite-chez-lenfant/
Doell DL, Folmer DE, Lee HS, Butts KM, Carberry SE. Exposure estimate for FD&C colour additives for the US population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. https://pubmed.ncbi.nlm.nih.gov/27092991/
Dussert, F., Arthaud, P. A., Arnal, M. E., Dalzon, B., Torres, A., Douki, T., ... & Carrière, M. (2020). Toxicity to RAW264. 7 macrophages of silica nanoparticles and the E551 food additive, in combination with genotoxic agents. Nanomaterials, 10(7), 1418.
ECHA, 2017. Titanium dioxide proposed to be classified as suspected of causing cancer when inhaled, ECHA, 2017 https://echa.europa.eu/fr/-/titanium-dioxide-proposed-to-be-classified-as-suspected-of-causing-cancer-when-inhaled
EFSA (2021). Opinion on the re‐evaluation of mono‐ and diglycerides of fatty acids (E 471) as food additive in foods for infants below 16 weeks of age and follow‐up of their re‐evaluation as food additives for uses in foods for all population groups. https://www.efsa.europa.eu/en/efsajournal/pub/6885
EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food), Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Leblanc J-C, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Chrysafidis D, Gürtler R, Mosesso P, Parent-Massin D, Tobback P, Kovalkovicova N, Rincon AM, Tard A and Lambré C, 2018. Scientific Opinion on the re-evaluation of silicon dioxide (E 551) as a food additive. EFSA Journal 2018;16(1):5088, 70 pp. https://doi.org/10.2903/j.efsa.2018.5088
EFSA, 2004. Opinion of the Scientific Panel on Dietetic products, nutrition and allergies [NDA] on a request from the Commission relating to the evaluation of allergenic foods for labelling purposes. EFSA Journal 2004;32, 197 pp.
EFSA, 2004. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to tertiary-Butylhydroquinone (TBHQ). EFSA Journal (2004) 24, 1-13
EFSA, 2004. Opinion on sucrose esters of fatty acids E 473 and sucroglycerides E 474. The EFSA Journal, 106, 1-24. https://www.efsa.europa.eu/en/efsajournal/pub/106
EFSA, 2007. Beeswax (E 901) as a glazing agent and as carrier for flavours - Scientific Opinion of the Panel on Food additives, Flavourings, Processing aids and Materials in Contact with Food (AFC). https://www.efsa.europa.eu/fr/efsajournal/pub/615
EFSA, 2008. Assessment of the results of the study by McCann et al.(2007) on the effect of some colours and sodium benzoate on children's behaviour‐Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA Journal, 6(3), 660. https://www.efsa.europa.eu/en/efsajournal/pub/660
EFSA, 2008. EFSA evaluates Southampton study on food additives and child behaviour. https://www.efsa.europa.eu/en/news/efsa-evaluates-southampton-study-food-additives-and-child-behaviour
EFSA, 2008. Safety of aluminium from dietary intake[1] - Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA Journal (2008) 754, 1-34. https://www.efsa.europa.eu/en/efsajournal/pub/754
EFSA, 2009. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Scientific Opinion on the re-evaluation of Allura Red AC (E 129) as a food additive on request from the European Commission. EFSA Journal 2009; 7(11):1327. [39 pp.]. doi:10.2903/j.efsa.2009.1327. https://www.efsa.europa.eu/en/efsajournal/pub/1327
EFSA, 2009. Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from Commission on Flavouring Group Evaluation 46 (FGE.46). Ammonia and two ammonium salts from chemical group 30 (2009) https://www.efsa.europa.eu/fr/efsajournal/pub/955
EFSA, 2009. Scientific Opinion on the re‐evaluation Tartrazine (E 102). EFSA Journal, 7(11), 1331.
EFSA, 2009. Scientific Opinion on the use of natamycin (E 235) as a food additive. EFSA Journal 2009;7(12):1412
EFSA, 2010. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the appropriateness of the food azo-colours Tartrazine (E 102), Sunset Yellow FCF (E 110), Carmoisine (E 122), Amaranth (E 123), Ponceau 4R (E 124), Allura Red AC (E 129), Brilliant Black BN (E 151), Brown FK (E 154), Brown HT (E 155) and Litholrubine BK (E 180) for inclusion in the list of food ingredients set up in Annex IIIa of Directive 2000/13/EC. EFSA Journal 2010; 8(10):1778. [11 pp.]. doi:10.2903/j.efsa.2010.1778 https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2010.1778
EFSA, 2010. Scientific Opinion on the appropriateness of the food azo-colours Tartrazine (E 102), Sunset Yellow FCF (E 110), Carmoisine (E 122), Amaranth (E 123), Ponceau 4R (E 124), Allura Red AC (E 129), Brilliant Black BN (E 151), Brown FK (E 154), Brown HT (E 155) and Litholrubine BK (E 180) for inclusion in the list of food ingredients set up in Annex IIIa of Directive 2000/13/EC. EFSA Journal, 8(10):1778.
EFSA, 2010. Scientific Opinion on the re‐evaluation of Brilliant Blue FCF (E 133) as a food additive. EFSA Journal, 8(11), 1853. https://www.efsa.europa.eu/en/efsajournal/pub/1853
EFSA, 2010. Scientific Opinion on the safety of sucrose esters of fatty acids prepared from vinyl esters of fatty acids and on the extension of use of sucrose esters of fatty acids in flavourings. EFSA Journal, 8(3), 1512. doi:10.2903/j.efsa.2010.1512 https://www.efsa.europa.eu/en/efsajournal/pub/1512
EFSA, 2010. Statement in relation to the safety of erythritol (E 968) in light of new data, including a new paediatric study on the gastrointestinal tolerability of erythritol. EFSA Journal, 8(7), 1650.
EFSA, 2011. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Scientific Opinion on the re-evaluation of Erythrosine (E 127) as a food additive. EFSA Journal 2011; 9(1):1854. [46 pp.]. \n https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2011.1854
EFSA, 2011. European Food Safety Authority; Revised exposure assessment for Sunset Yellow FCF based on the proposed revised maximum permitted levels of use as a food additive. EFSA Journal 2011; 9(9):2349. [10 pp.] doi:10.2903/j.efsa.2011.2349. https://www.efsa.europa.eu/en/efsajournal/pub/2349
EFSA, 2011. Revised exposure assessment for steviol glycosides for the proposed uses as a food additive. EFSA Journal 2011;9(1):1972, 19 pp. doi:10.2903/j.efsa.2011.1972
EFSA, 2011. Scientific Opinion on Flavouring Group Evaluation 46, Revision 1 (FGE.46Rev1): Ammonia and three ammonium salts from chemical group 30. EFSA Journal 2011; 9(2):1925. [35 pp.]\n\n https://www.efsa.europa.eu/en/efsajournal/pub/1925
EFSA, 2011. Scientific Opinion on re-evaluation of calcium carbonate (E 170) as a food additive. EFSA Journal 2011;9(7):2318
EFSA, 2011. Scientific Opinion on the re‐evaluation of butylated hydroxyanisole–BHA (E 320) as a food additive. EFSA Journal, 9(10), 2392.
EFSA, 2011. Scientific Opinion on the re‐evaluation of caramel colours (E 150 a, b, c, d) as food additives. https://www.efsa.europa.eu/en/efsajournal/pub/2004
EFSA, 2011. Scientific Opinion on the substantiation of health claims related to the sugar replacers xylitol, sorbitol, mannitol, maltitol, lactitol, isomalt, erythritol, D‐tagatose, isomaltulose, sucralose and polydextrose and maintenance of tooth mineralisation by decreasing tooth demineralisation (ID 463, 464, 563, 618, 647, 1182, 1591, 2907, 2921, 4300), and reduction of post‐prandial glycaemic responses (ID 617, 619, 669, 1590, 1762, 2903, 2908, 2920) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA Journal, 9(4), 2076.
EFSA, 2012. European Food Safety Authority; Health risk of ammonium released from water filters. EFSA Journal https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2012.2918
EFSA, 2012. Scientific Opinion on the safety and efficacy of ammonium chloride for bovines, sheep, dogs and cats. EFSA Journal 2012; 10(6):2738. [18 pp.] \n https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2012.2738
EFSA, 2012. Refined exposure assessment for caramel colours (E 150a, c, d). EFSA Journal, 10(12), 3030.
EFSA, 2012. Scientific Opinion on the exposure assessment of sucrose esters of fatty acids (E 473) from its use as food additive. EFSA Journal, 10(5), 2658. doi:10.2903/j.efsa.2012.2658 https://www.efsa.europa.eu/en/efsajournal/pub/2658
EFSA, 2012. Scientific Opinion on the re‐evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA Journal, 10(3), 2588. https://www.efsa.europa.eu/en/efsajournal/pub/2588
EFSA, 2012. Statement on the safety assessment of the exposure to butylated hydroxyanisole E 320 (BHA) by applying a new exposure assessment methodology. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2012.2759
EFSA, 2013. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Scientific Opinion on the re-evaluation of Patent Blue V (E 131) as a food additive. EFSA Journal 2013; 11(3):2818. [35 pp.] doi:10.2903/j.efsa.2013.2818. https://www.efsa.europa.eu/en/efsajournal/pub/2818
EFSA, 2013. Scientific Opinion on the re-evaluation of aspartame (E 951) as a food additive. EFSA Journal 2013;11(12):3496. https://www.efsa.europa.eu/fr/efsajournal/pub/3496
EFSA, 2013. Scientific Opinion on the re-evaluation of sodium stearoyl-2-lactylate (E 481) and calcium stearoyl-2-lactylate (E 482) as food additives. EFSA Journal 2013;11(5):3144.
EFSA, 2013. Statement on the exposure assessment of sodium stearoyl-2-lactylate and calcium stearoyl-2-lactylate including exposure resulting from extension of the authorisation of sodium stearoyl-2-lactylates. EFSA Journal 2013;11(3):3125.
EFSA, 2014. EFSA ANS Panel (Panel on Food Additives and Nutrient Sources added to Food), 2014. Scientific opinion on the reconsideration of the temporary ADI and refined exposure assessment for Sunset Yellow FCF (E 110). EFSA Journal 2014; 12(7):3765, 39 pp. doi:10.2903/j.efsa.2014.3765 https://www.efsa.europa.eu/en/efsajournal/pub/3765
EFSA, 2014. Scientific Opinion on the re-evaluation of propionic acid (E 280), sodium propionate (E 281), calcium propionate (E 282) and potassium propionate (E 283) as food additives. EFSA Journal 2014;12(7):3779
EFSA, 2014. Scientific Opinion on the re-evaluation of propyl gallate (E 310) as a food additive. EFSA Journal 2014; 12(4):3642, 46 pp. doi:10.2903/j.efsa.2014.3642\n https://www.efsa.europa.eu/en/efsajournal/pub/3642
EFSA, 2014. Scientific Opinion on the revised exposure assessment of steviol glycosides (E 960) for the proposed uses as a food additive. EFSA Journal 2014;12(5):3639, 23 pp.
EFSA, 2015. European Food Safety Authority. (2015). Refined exposure assessment for Allura Red AC (E 129). EFSA Journal, 13(2), 4007. https://www.efsa.europa.eu/en/efsajournal/pub/4007
EFSA, 2015. Scientific Opinion on Dietary Reference Values for phosphorus. EFSA Journal 2015; 13( 7):4185, 54 pp.
EFSA, 2015. Scientific Opinion on the extension of use of steviol glycosides (E 960) as a food additive. EFSA Journal 2015;13(6):4146, 20 pp.
EFSA, 2015. Scientific Opinion on the re-evaluation of polyoxyethylene sorbitan monolaurate (E 432), polyoxyethylene sorbitan monooleate (E 433), polyoxyethylene sorbitan monopalmitate (E 434), polyoxyethylene sorbitan monostearate (E 435) and polyoxyethylene sorbitan tristearate (E 436) as food additives. EFSA Journal 2015;13(7):4152 https://www.efsa.europa.eu/en/efsajournal/pub/4152
EFSA, 2015. Scientific Opinion on the re‐evaluation of cochineal, carminic acid, carmines (E 120) as a food additive. EFSA Journal, 13(11), 4288.
EFSA, 2015. Scientific Opinion on the re‐evaluation of sorbic acid (E 200), potassium sorbate (E 202) and calcium sorbate (E 203) as food additives. EFSA Journal, 13(6), 4144.
EFSA, 2015. Scientific Opinion on the safety of the proposed extension of use of - erythritol (E 968) as a food additive.
EFSA, 2015. Update of the Scientific Opinion on the safety and efficacy of erythrosine in feed for cats, dogs, reptiles and ornamental fish. EFSA Journal 2015; 13 (9):4233, 19 pp https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.4233
EFSA, 2016. Re-evaluation of titanium dioxide (E 171) as a food additive. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2016.4545
EFSA, 2016. Safety of the extension of use of sodium propionate (E 281) as a food additive. EFSA Journal. 14.
EFSA, 2016. Scientific Opinion on erucic acid in feed and food. EFSA Journal 2016; 14(11):4593, 173 pp. doi:10.2903/j.efsa.2016.4593 https://www.efsa.europa.eu/en/efsajournal/pub/4593
EFSA, 2016. Scientific Opinion on the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. EFSA Journal 2016; 14(4): 4438.
EFSA, 2016. Scientific Opinion on the re‐evaluation of benzoic acid (E 210), sodium benzoate (E 211), potassium benzoate (E 212) and calcium benzoate (E 213) as food additives. EFSA Journal, 14(3), 4433. https://www.efsa.europa.eu/en/efsajournal/pub/4433
EFSA, 2016. Scientific opinion on the risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 14, 159. https://doi.org/10.2903/j.efsa.2016.4426
EFSA, 2016. Statement on the refined exposure assessment of tertiary-butyl hydroquinone (E 319). EFSA Journal 2016;14(1):4363
EFSA, 2016. The safety of annatto extracts (E 160b) as a food additive. EFSA Journal 2016;14(8):4544
EFSA, 2017. Call for technical and toxicological data on sweeteners authorised as food additives in the EU.
EFSA, 2017. Exposure assessment of annatto colouring principles bixin and norbixin (E 160b) when used as food additives. EFSA Journal 2017;15(8):4966
EFSA, 2017. L'évaluation des risques expliquée par l’Efsa - Nitrites et nitrates ajoutés aux aliments. EFSA Journal 2017;15(6):4786. https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/nitrates-nitrites-170614-FR.pdf
EFSA, 2017. Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA Journal 2017;15(6):4786. https://www.efsa.europa.eu/en/efsajournal/pub/4786
EFSA, 2017. Re‐evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA Journal, 15(7), e04910.
EFSA, 2017. Re‐evaluation of glycerol (E 422) as a food additive. EFSA Journal, 15(3), e04720 https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2017.4720
EFSA, 2017. Re‐evaluation of guar gum (E 412) as a food additive. https://www.efsa.europa.eu/en/efsajournal/pub/4669
EFSA, 2017. Re‐evaluation of mono‐and di‐glycerides of fatty acids (E 471) as food additives. EFSA Journal, 15(11), e05045. https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.5045
EFSA, 2017. Scientific Opinion on the re-evaluation of polyglycerol esters of fatty acids (E 475) as a food additive. EFSA Journal 2017;15(12):5089, 32 pp. https://doi.org/10.2903/j.efsa.2017.5089
EFSA, 2017. Scientific Opinion on the re-evaluation of sorbitan monostearate (E 491), sorbitan tristearate (E 492), sorbitan monolaurate (E 493), sorbitan monooleate (E 494) and sorbitan monopalmitate (E 495) when used as food additives. EFSA Journal 2017; 15(5):4788, 56 pp.\n https://doi.org/10.2903/j.efsa.2017.4788
EFSA, 2017. Statement on the validity of the conclusions of a mouse carcinogenicity study on sucralose (E 955) performed by the Ramazzini Institute. EFSA Journal 2017; 15( 5):4784, 14 pp. https://doi.org/10.2903/j.efsa.2017.4784
EFSA, 2018. Call for food additives usage level and / or concentration data in food and beverages intended for human consumption.
EFSA, 2018. Call for technical and toxicological data on sodium carboxymethylcellulose (E 466) for uses as a food additive in foods for all population groups including infants below 16 weeks of age
EFSA, 2018. Call for technical data on the permitted food additive glycerol (E422).
EFSA, 2018. Call for technological data on mono- and di-glycerides of fatty acids (E 471) for uses as a food additive in foods for all population groups including infants below 16 weeks of age https://www.efsa.europa.eu/en/consultations/call/call-technical-and-toxicological-data-mono-and-di-glycerides-fatty
EFSA, 2018. EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Chaudhry Q, Cubadda F, Gott D, Oomen A, Weigel S, Karamitrou M, Schoonjans R and Mortensen A, 2018. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal 2018;16(7):5327, 95 pp. https://doi.org/10.2903/j.efsa.2018.5327
EFSA, 2018. Re-evaluation of aluminium sulphates (E520–E523) and sodium aluminium phosphate (E541) as food additives. EFSA Journal 2018;16(7):5372.
EFSA, 2018. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA Journal 2018;16(1):5088
EFSA, 2018. Re‐evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA Journal, 16(4), e05238. https://www.efsa.europa.eu/en/efsajournal/pub/5238
EFSA, 2018. Re‐evaluation of celluloses E 460 (i), E 460 (ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as food additives. EFSA Journal, 16(1), e05047.
EFSA, 2018. Re‐evaluation of celluloses E 460(i), E 460(ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as food additives. https://www.efsa.europa.eu/en/efsajournal/pub/5047
EFSA, 2018. Re‐evaluation of sodium aluminium phosphate (E 541) as a food additive. EFSA Journal, 16(7), 5372. https://doi.org/10.2903/j.efsa.2018.5372
EFSA, 2018. Scientific Opinion on the re-evaluation of propane-1,2-diol (E 1520) as a food additive. EFSA Journal 2018;16(4):5235, 40 pp. https://doi.org/10.2903/j.efsa.2018.5235
EFSA, 2018. Scientific Opinion on the re-evaluation of propane-1,2-diol esters of fatty acids (E 477) as a food additive. EFSA Journal 2018;16(12):5497, 30 pp. https://doi.org/10.2903/j.efsa.2018.5497
EFSA, 2018. Scientific Opinion on the refined exposure assessment of sucrose esters of fatty acids (E 473) from its use as a food additive. EFSA Journal;16(1):5087, 22 pp. doi: 10.2903/j.efsa.2018.5087 https://www.efsa.europa.eu/en/efsajournal/pub/5087
EFSA, 2019. FAF Panel (EFSA Panel on Food Additives and Flavourings), Younes M, Aquilina G, Castle L, Engel K-H, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Mennes W, Moldeus P, Oskarsson A, Shah R, Waalkens-Berendsen I, Wölfle D, Aggett P, Cupisti A, Fortes C, Kuhnle G, Lillegaard IT, Scotter M, Giarola A, Rincon A, Tard A and Gundert-Remy U, 2019. Scientific Opinion on the re-evaluation of phosphoric acid–phosphates – di-, tri- and polyphosphates (E 338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use. EFSA Journal 2019;17(6):5674, 156 pp. https://doi.org/10.2903/j.efsa.2019.5674
EFSA, 2019. Opinion on the follow‐up of the re‐evaluation of sorbic acid (E200) and potassium sorbate (E202) as food additives. EFSA Journal, 17(3), e05625.
EFSA, 2019. Opinion on the re‐evaluation of acacia gum (E 414) as a food additive in foods for infants below 16 weeks of age and the follow‐up of its re‐evaluation as a food additive for uses in foods for all population groups. https://www.efsa.europa.eu/en/efsajournal/pub/5922
EFSA, 2019. Outcome of the questions for health professionals in the fields of nephrology, mineral metabolism, cardiovascular and nutrition medicine on phosphates food additives re-evaluation https://www.efsa.europa.eu/en/supporting/pub/en-1624
EFSA, 2019. Re-evaluation of sulphuric acid and its sodium, potassium, calcium and ammonium salts (E 513, 514 (i), 514 (ii), 515 (i), 515 (ii), 516 and 517) as food additive. EFSA Journal 2019;17(10):5868
EFSA, 2019. Safety of annatto E and the exposure to the annatto colouring principles bixin and norbixin (E 160b) when used as a food additive. EFSA Journal 2019;17(3):5626
EFSA, 2019. Updated Re-evaluation of food additives : tentative work programme 2019 https://www.efsa.europa.eu/sites/default/files/foodaddtentativewp19.pdf
EFSA, 2020. Scientific Opinion on the safety and efficacy of propyl gallate for all animal species. EFSA Journal 2020;18(4):6069, 16 pp. https://doi.org/10.2903/j.efsa.2020.6069
EFSA, 2021. EFSA Scientific Committee, More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández-Jerez A, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano (deceased) V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J and Schoonjans R, 2021. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA Journal 2021;19(8):6769, 48 pp. https://doi.org/10.2903/j.efsa.2021.6769
EFSA, 2021. EFSA Scientific Committee, More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández-Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J and Schoonjans R 2021. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA Journal 2021;19(8):6768, 111 pp. https://doi.org/10.2903/j.efsa.2021.6768
EFSA, 2021. Opinion on the re‐evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives in foods for infants below 16 weeks of age and follow‐up of their re‐evaluation as food additives for uses in foods for all population groups. https://www.efsa.europa.eu/en/efsajournal/pub/6387
EFSA, 2021. Re‐evaluation of thaumatin (E 957) as food additive. EFSA Journal, 2021, vol. 19, no 11, p. e06884.
EFSA, 2021. Safety assessment of titanium dioxide (E171) as a food additive https://www.efsa.europa.eu/fr/efsajournal/pub/6585
EFSA, 2022. Bampidis V, Azimonti G, Bastos ML, Christensen H, Dusemund B, Fašmon Durjava M, Kouba M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Dierick N, Brozzi R, Galobart J, Gregoretti L, Vettori MV, Innocenti ML. Safety and efficacy of the feed additive consisting of ammonium chloride (Ammonium Chloride AF) for all ruminants, dogs and cats for the renewal of its authorisation (BASF SE) https://www.efsa.europa.eu/en/efsajournal/pub/7255
EFSA, 2022. Follow‐up of the re‐evaluation of polyglycerol esters of fatty acids (E 475) as a food additive. https://www.efsa.europa.eu/en/efsajournal/pub/7308
EFSA, 2022. Opinion on the re-evaluation of sodium carboxy methyl cellulose (E 466) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as food additive for uses in foods for all population groups https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2022.7665
EFSA, 2022. Panel on Food Additives and Flavourings (FAF) (2022). Follow-up of the re-evaluation of glycerol (E 422) as a food additive. EFSA Journal, 20(6), 7353. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2022.7353
EFSA, 2022. Re‐evaluation of neohesperidine dihydrochalcone (E 959) as a food additive. EFSA Journal, 20(11), e07595. https://doi.org/10.2903/j.efsa.2022.7595
EFSA, 2023. Re-evaluation of sucrose esters of fatty acids (E 473) as a food additive in foods for infants below 16 weeks of age and follow-up of its previous evaluations as food additive for uses in foods for all population groups EFSA Journal 2023; 21(4):7961, 34 pp. https://doi.org/10.2903/j.efsa.2023.7961
EFSA, 2023. Re‐evaluation of locust bean gum (E 410) as a food additive in foods for infants below 16 weeks of age and follow‐up of its re‐evaluation as a food additive for uses in foods for all population groups. https://www.efsa.europa.eu/en/efsajournal/pub/7775
EFSA, 2023. Re‐evaluation of xanthan gum (E 415) as a food additive in foods for infants below 16 weeks of age and follow‐up of its re‐evaluation as a food additive for uses in foods for all population groups. https://www.efsa.europa.eu/en/efsajournal/pub/7951
EFSA, 2023. Risk assessment of N-nitrosamines in food - EFSA Panel on Contaminants in the Food Chain - 28 March 2023 https://doi.org/10.2903/j.efsa.2023.7884
EFSA, 2024. EFSA FAF Panel (EFSA Panel on Food Additives and Flavourings), Younes, M., Aquilina, G., Castle, L., Degen, G., Engel, K.-H., Fowler, P., Frutos Fernandez, M. J., Fürst, P., Gürtler, R., Husøy, T., Manco, M., Mennes, W., Moldeus, P., Passamonti, S., Shah, R., Waalkens-Berendsen, I., Wright, M., Andreoli, C., … Gundert-Remy, U. (2024). Re-evaluation of silicon dioxide (E 551) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as a food additive for uses in foods for all population groups. EFSA Journal, 22(10), e8880. https://doi.org/10.2903/j.efsa.2024.8880
El-Desoky GE, Abdel-Ghaffar A, Al-Othman ZA, Habila MA, Al-Sheikh YA, Ghneim HK, et al. (2017). Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. Eur Rev Med Pharmacol Sci 21:635-645 https://pubmed.ncbi.nlm.nih.gov/28239801/
Elder, R. (2022). Azoreduction: Reductive Metabolism of Azo Food Dyes by Species of the Human Gut Microbiome (Doctoral dissertation, University of Guelph). https://atrium.lib.uoguelph.ca/items/8dda023e-1af0-4502-8166-82c045861f5d
Elder, R., Vancuren, S. J., Botschner, A. J., Josephy, P. D., & Allen-Vercoe, E. (2023). Metabolism of azo food dyes by bacterial members of the human gut microbiome. Anaerobe, 83. https://doi.org/10.1016/j.anaerobe.2023.102783
Elmén, L., Zlamal, J. E., Scott, D. A., Lee, R. B., Chen, D. J., Colas, A. R., ... & Peterson, S. N. (2020). Dietary emulsifier sodium stearoyl lactylate alters gut microbiota in vitro and inhibits bacterial butyrate producers. Frontiers in microbiology, 11, 892.
Eman G.E. Helal, Abrar W. Barayan, Mohamed A. Abdelaziz, Nahla S.A. EL-Shenawe. Adverse Effects of Mono Sodium Glutamate, Sodium Benzoate and Chlorophyllins on some Physiological Parameters in Male Albino Rats. The Egyptian Journal of Hospital Medicine (January 2019) Vol. 74 (8), Page 1857-1864. https://journals.ekb.eg/article_28865_11292a3eb832e574000760d346e86594.pdf
Emily R. Leonard, Emily S. Marques, Monika A. Roy, Sarah M. Conlin, Ravi Ranjan, Alicia R. Timme-Laragy, Dietary exposure to the food preservative tert-Butylhydroquinone (tBHQ) impairs zebrafish (Danio rerio) survival, growth, organ development, and gene expression in Nrf2a-dependent and independent ways, Food and Chemical Toxicology, Volume 176, 2023 https://doi.org/10.1016/j.fct.2023.113788
Environmental Health Hazard Assessment, O. (2010). EVIDENCE ON THE CARCINOGENICITY OF 3-Monochloropropane-1,2-diol (3-MCPD; α-Chlorohydrin).\n https://oehha.ca.gov/media/downloads/crnr/123mcpd.pdf
EPA, 2021. Provisional Peer-Reviewed Toxicity Values for Ammonium Salts of Inorganic Phosphates: Monoammonium Phosphate (MAP) (CASRN 7722-76-1) Diammonium Phosphate (DAP) (CASRN 7783-28-0)\t https://www.ncbi.nlm.nih.gov/books/NBK584915/
Erdemli Z, Altinoz E, Erdemli ME, Gul M, Gozukara Bag H, Gul S. Ameliorative effects of crocin on tartrazine dye–induced pancreatic adverse effects: a biochemical and histological study.Environ Sci Pollut Res 2021; 28: 2209–2218 https://pubmed.ncbi.nlm.nih.gov/32870427/
European Commission - Re-evaluation https://ec.europa.eu/food/safety/food-improvement-agents/additives/re-evaluation_en
European Food Industry Autority. EU food additive experts fail to declare links with food industry. https://www.corporateeurope.org/en/efsa/2011/09/eu-food-additive-experts-fail-declare-links-food-industry
Exley, C. Human Exposure to Aluminium. Environ. Sci.: Processes Impacts 2013, 15 (10), 1807–1816.
Exley, C. The Aluminium-Amyloid Cascade Hypothesis and Alzheimer’s Disease. Subcell. Biochem. 2005, 38, 225–234.
Fagherazzi et al., 2013. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l'Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr, 97(3), 517-23. https://doi.org/10.3945/ajcn.112.050997
FAO, 1998. Joint FAO/WHO Expert Committee on Food Additives Monography – POTASSIUM SORBATE
FAO, 2000. Jecfa, 2000. Joint FAO/WHO Expert Committee on Food Additives Monography – Caramel Colours
FAO, 2002. Jecfa, 2002. Joint FAO/WHO Expert Committee on Food Additives Monography - Nitrite (and potential endogenous formation of N-nitroso compounds). WHO Food Additives Series 50. https://www.inchem.org/documents/jecfa/jecmono/v50je05.htm
FAO, 2003. Jecfa, 2003. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives. DIACETYLTARTARIC AND FATTY ACID ESTERS OF GLYCEROL
FAO, 2009. Jecfa, 2009. Joint FAO/WHO Expert Committee on Food Additives Monography. DIACETYLTARTARIC and FATTY ACID ESTERS of GLYCEROL
FDA, 1971. FD&C Red No. 40. Section 74.340 - Electronic Code of Federal Regulations https://www.ecfr.gov/current/title-21/chapter-I/subchapter-A/part-74/subpart-A/section-74.340
FDA, 1973. Code of Ferderal Regulations, Title 21, Chapter I, Subchapter B, Part 172, subpart B, Sec. 172.115 BHT. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=172.115
FDA, 1973. Substances Added to Food (formerly EAFUS) - CARRAGEENAN. https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=CARRAGEENAN&sort=Sortterm_ID&order=ASC&startrow=1&type=basic&search=carrageenan
FDA, 1974. U.S. Food and Drug Administration. Code of Federal Regulations Title 21 Chapter, Subchapter B, Part 184 Subpart B § 184.1138\n https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-184/subpart-B/section-184.1138
FDA, 1974. Code of Federal Regulations Title 21 Chapter, Subchapter B, Part 184 Subpart B § 184.1141\n https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-184/subpart-B/section-184.1141a
FDA, 1974. Select Committee on GRAS Substances (SCOGS) Opinion: Ammonium salts (SCOGS Report Number 34)\n https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=SCOGS&sort=SCOGS_Report_Number&order=ASC&startrow=1&type=column&search=SCOGS%20Report%20Number%C2%A4VARCHAR%C2%A434
FDA, 1975. Food and Drug Administration. Code of Federal Regulations Title 21, SCOGS Report Number 32. NTIS Accession Number PB262651. https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB262651
FDA, 1984. Code of Federal Regulations, Title 21, Section 184.1733: Sodium benzoate. U.S. Department of Health and Human Services (1984) https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-184/subpart-B/section-184.1733
FDA, 2011. Food Advisory Committee (FDA) meeting transcript. Meeting on food dyes and children's behavior. March 30, 2011 https://www.talkingaboutthescience.com/studies/FDA-FACTranscript-03-30-2011.pdf
FDA, 2013. Questions and Answers on Caramel Coloring and 4-MEI
FDA, 2016. Food and Drug Administration, HHS. Food Labeling: revision of the Nutrition and Supplement Facts Labels. Final Rule. Fed Regist. 2016;81(103):33740-33999. https://pubmed.ncbi.nlm.nih.gov/27236870/
FDA, 2018. Azodicarbonamide (ADA) Frequently Asked Questions. https://www.fda.gov/food/food-additives-petitions/azodicarbonamide-ada-frequently-asked-questions#ADA
FDA, 2020. Sorbitan Monostearate\n https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FoodSubstances&id=SORBITANMONOSTEARATE&sort=Sortterm_ID&order=ASC&startrow=1&type=basic&search=sorbitan
FDA, 2023. 21 CFR § 201.323 - Aluminum in large and small volume parenterals used in total parenteral nutrition. Code of Federal Regulations. https://www.ecfr.gov/current/title-21/chapter-I/subchapter-C/part-201/subpart-G/section-201.323
FDA, 2023. An evaluation of the article “The artificial sweetener erythritol and cardiovascular\nevent risk” by Witkowski et al., Nat Med. 2023 Mar;29(3):710-718. https://www.fda.gov/media/182122/download?attachment
FDA, 2023. Food Additive Status List https://www.fda.gov/food/food-additives-petitions/food-additive-status-list
FDA, 2023. Potassium bromate. https://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=POTASSIUMBROMATE
FDA, 2024. Sodium Aluminum Phosphate, Acidic or Basic.\ Substances Added to Food Database. https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=SODIUMALUMINUMPHOSPHATEACIDICORBASIC
FDA, 2024. 21 CFR § 172.185 - TBHQ. Electronic Code of Federal Regulations (eCFR) https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172/subpart-B/section-172.185
FDA, 2024. Aspartame and Other Sweeteners in Food. https://www.fda.gov/food/food-additives-petitions/aspartame-and-other-sweeteners-food
FDA, 2024. CFR - Code of Federal Regulations Title 21: Sec. 172.480 Silicon dioxide. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.480
FDA, 2024. Code of Federal Regulations, Title 21, Section 172.856: Propylene glycol esters of fatty acids. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.856
FDA, 2024. Code of Federal Regulations, Title 21, Volume 3, CFR Parts: 172.615, 181.24, 184.1660 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1660
FDA, 2024. Code of Federal Regulations. (n.d.). Aluminum sodium sulfate (21 CFR § 182.1131). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.1131
FDA, 2024. FDA - Electronic Code of Federal Regulations. (n.d.). § 74.706 FD&C Yellow No. 6. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=74.706
FDA, 2024. FDA - Electronic Code of Federal Regulations. (n.d.). 21 CFR § 74.705 - FD&C Yellow No. 5.\n https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=74.705
FDA, 2024. FDA, Electronic Code of Federal Regulations. (n.d.). 21 CFR § 74.101 - General specifications for FD&C Blue No. 1. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=74.101
FDA, 2024. Polyglycerol esters of fatty acids. Code of Federal Regulations Title 21, Section 172.854. U.S. Food and Drug Administration https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.854
FDA, 2024. Sec. 172.859 Sucrose fatty acid esters.\ Code of Federal Regulations, Title 21, Volume 3. https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172/subpart-I/section-172.859
FDA, 2024. Substances Added to Food (Code of Federal Regulations Title 21) - Extract from different additives pages: Polysorbate 20, 40, 65 and 80) https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.840
FDA, 2024. Summary of Color Additives for Use in the United States in Foods, Drugs, Cosmetics, and Medical Devices. https://www.fda.gov/industry/color-additives/summary-color-additives-use-united-states-foods-drugs-cosmetics-and-medical-devices#table1B
FDA, 2024. Titanium Dioxide as a Color Additive in Foods. https://www.fda.gov/industry/color-additives/titanium-dioxide-color-additive-foods
FDA, 2025. FDA to revoke authorization for use of Red No. 3 in food and ingested drugs https://www.fda.gov/food/hfp-constituent-updates/fda-revoke-authorization-use-red-no-3-food-and-ingested-drugs
Federal Institute for Risk Assessment, G. (2020). Possible health risks due to high concentrations of 3-MCPD and glycidyl fatty acid esters in certain foods. https://doi.org/10.17590/20200420-134029
Feray, A., Guillet, É., Szely, N., Hullo, M., Legrand, F. X., Brun, E., ... & Biola-Vidamment, A. (2022). Synthetic amorphous silica nanoparticles promote human dendritic cell maturation and CD4+ T-lymphocyte activation. Toxicological Sciences, 185(1), 105-116.
Finamor, I. A., Bressan, C. A., Torres-Cuevas, I., Rius-Pérez, S., da Veiga, M., Rocha, M. I., ... & Pérez, S. (2021). Long-Term Aspartame Administration Leads to Fibrosis, Inflammasome Activation, and Gluconeogenesis Impairment in the Liver of Mice. Biology, 10(2), 82. - https://doi.org/10.3390/biology10020082
Food Standard Australia and New Zealand. Intense sweeteners. https://www.foodstandards.gov.au/consumer/additives/Sweeteners
Food Standards Australia New Zealand. (2006). Initial assessment report: Application A555 - Declaration of antioxidants in fats and oils. https://www.foodstandards.govt.nz/sites/default/files/food-standards-code/applications/Documents/A555%20Antioxidant%20declaration%20IAR%20FINAL.pdf
Fowler, S.P., Williams, K., Resendez, R.G., Hunt, K.J., Hazuda, H.P. and Stern, M.P. (2008), Fueling the Obesity Epidemic? Artificially Sweetened Beverage Use and Long-term Weight Gain. Obesity, 16: 1894-1900. https://doi.org/10.1038/oby.2008.284
Frankenfeld, C. L., Sikaroodi, M., Lamb, E., Shoemaker, S., & Gillevet, P. M. (2015). High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Annals of epidemiology, 25(10), 736-742. https://pubmed.ncbi.nlm.nih.gov/26272781/
Fuchsberger T, Yuste R, Martinez-Bellver S, Blanco-Gandia MC, Torres-Cuevas I, Blasco-Serra A, Arango R, Miñarro J, Rodríguez-Arias M, Teruel-Marti V, Lloret A, Viña J. Oral Monosodium Glutamate Administration Causes Early Onset of Alzheimer's Disease-Like Pathophysiology in APP/PS1 Mice. J Alzheimers Dis. 2019;72(3):957-975. doi: 10.3233/JAD-190274. https://pubmed.ncbi.nlm.nih.gov/31658055/
Fulgoni K, Fulgoni VL 3rd. Trends in Total, Added, and Natural Phosphorus Intake in Adult Americans, NHANES 1988-1994 to NHANES 2015-2016. Nutrients. 2021 Jun 29;13(7):2249. doi: 10.3390/nu13072249. PMID: 34210102; PMCID: PMC8308364. https://pmc.ncbi.nlm.nih.gov/articles/PMC8308364/
G Bianchi, M., Chiu, M., Taurino, G., Ruotolo, R., Marmiroli, N., Bergamaschi, E., ... & Bussolati, O. (2020). Pyrogenic and Precipitated Amorphous Silica Nanoparticles Differentially Affect Cell Responses to LPS in Human Macrophages. Nanomaterials, 10(7), 1395.
Gao et al., 2011. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved. Journal of food science, 76(6), T125-T129.
Gao Y, Wu A, Li Y, Chang Y, Xue C, Tang Q. The risk of carrageenan-induced colitis is exacerbated under high-sucrose/high-salt diet. Int J Biol Macromol. 2022 Jun 15;210:475-482. doi: 10.1016/j.ijbiomac.2022.04.158. Epub 2022 Apr 26. PMID: 35483512. https://pubmed.ncbi.nlm.nih.gov/35483512/
Gao Y, Yin L, Zhang Y, Li X, Liu L. Associations of saccharin intake with all-cause, cardiovascular and cancer mortality risk in USA adults. British Journal of Nutrition. 2024;132(9):1205-1213. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/associations-of-saccharin-intake-with-allcause-cardiovascular-and-cancer-mortality-risk-in-usa-adults/3A0CE04C81F0B8855DE00FACA29EE715
García-Melgares ML, de la Cuadra J, Martín B, Laguna C, Martínez L, Alegre V. Sensibilización por galatos. Revisión de 46 casos [Sensitization to gallates: review of 46 cases]. Actas Dermosifiliogr. 2007 Dec;98(10):688-93. Spanish. PMID: 18035026. https://pubmed.ncbi.nlm.nih.gov/18035026/
Gerasimidis, K., Bryden, K., Chen, X., Papachristou, E., Verney, A., Roig, M., ... & Parrett, A. (2020). The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. European journal of nutrition, 59(7), 3213-3230. https://doi.org/10.1007/s00394-019-02161-8
Gmoshinski, I. V., Shipelin, V. A., Shumakova, A. A., Trushina, E. N., Mustafina, O. K., Safenkova, I. V., ... & Tutelyan, V. A. (2020). Toxicity evaluation of nanostructured silica orally administered to rats: influence on immune system function. Nanomaterials, 10(11), 2126.
Gnudi, F., Panzacchi, S., Tibaldi, E., Iuliani, M., Sgargi, D., Bua, L. and Mandrioli, D. ‘Hemolymphoreticular Neoplasias from the Ramazzini Institute Long-term Mice and Rat Studies on Aspartame’, Annals of Global Health, 89(1), p. 43. https://doi.org/10.5334/aogh.4163
Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011;29:415–45. https://pubmed.ncbi.nlm.nih.gov/21219177/
Guo Z, Martucci NJ, Moreno-Olivas F, Tako E, Mahler GJ. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine. NanoImpact. 2017 Jan;5:70-82.
Guo, C.-H.; Wang, C.-L. Plasma Aluminum Is a Risk Factor for Oxidative Stress and Inflammation Status in Hemodialysis Patients. Clin. Biochem. 2011, 44 (16), 1309–1314.
Gutekunst L. The National Kidney Foundation Council on Renal Nutrition addresses the Food and Drug Administration. J Renal Nutr. 2014;24(6):430-431. https://pubmed.ncbi.nlm.nih.gov/25443545/
Haeberle, M., Geier, J., & Mahler, V. (2017). Contact allergy and intolerance to sulphite compounds: clinical and occupational relevance. Allergo Journal International, 26(2), 53-66.
Ham J, Lim W, Park S, Bae H, You S, Song G. Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function. Environ Pollut. 2019 May;248:845-856. doi: 10.1016/j.envpol.2019.02.087. Epub 2019 Mar 2. PMID: 30856500.\n https://pubmed.ncbi.nlm.nih.gov/30856500/
Hanawa, Y., Higashiyama, M., Kurihara, C., Tanemoto, R., Ito, S., Mizoguchi, A., ... & Hokari, R. (2021). Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. Journal of gastroenterology and hepatology, 36(11), 3140-3148. https://doi.org/10.1111/jgh.15654
Hartman, P. E. (1983). Putative mutagens and carcinogens in foods. II: Sorbate and sorbate‐nitrite interactions. Environmental mutagenesis, 5(2), 217-222.
He et al., 2008. Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP Study. Obesity, 16(8), 1875-1880.
He et al., 2011. Consumption of MSG in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). American Journal of Clinical Nutrition, 93, 1328–1336.
He, K., Zhao, L., Daviglus, M.L., Dyer, A.R., Van Horn, L., Garside, D., Zhu, L., Guo, D., Wu, Y., Zhou, B., Stamler, J. and (2008), Association of Monosodium Glutamate Intake With Overweight in Chinese Adults: The INTERMAP Study. Obesity, 16: 1875-1880. https://doi.org/10.1038/oby.2008.274
Health Canada, Screening Assessment for the Challenge Bromic acid, potassium salt (Potassium bromate). http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=47CCC26F-1
Hempt, C., Kaiser, J. P., Scholder, O., Buerki-Thurnherr, T., Hofmann, H., Rippl, A., ... & Hirsch, C. (2020). The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium. Toxicology in Vitro, 67, 104903.
Henschler, D. (1994), Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of Chlorine in Organic Molecules. Angew. Chem. Int. Ed. Engl., 33: 1920-1935. https://doi.org/10.1002/anie.199419201
Hermanussen et al., 2006. Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. European journal of clinical nutrition, 60(1), 25.
Hess, E. L., Myers, E. A., Swithers, S. E., & Hedrick, V. E. (2018). Associations between nonnutritive sweetener intake and metabolic syndrome in adults. Journal of the American College of Nutrition, 37(6), 487-493. https://doi.org/10.1080/07315724.2018.1440658
Hino, H., Kasai, S., Hattori, N., & Kenjo, K. (2000). A case of allergic urticaria caused by erythritol. The Journal of Dermatology, 27(3), 163-165.
Horowitz, B. Z. (1997). Bromism from excessive cola consumption. Journal of Toxicology: Clinical Toxicology, 35(3), 315-320.
Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. J Appl Toxicol. 2015 Oct;35(10):1122-32.
Hu, H., Fan, X., Guo, Q., Wei, X., Yang, D., Zhang, B., ... & Gu, N. (2019). Silicon dioxide nanoparticles induce insulin resistance through endoplasmic reticulum stress and generation of reactive oxygen species. Particle and fibre toxicology, 16(1), 1-18.
Huang et al., 2017. An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Scientific reports, 7, 44120.
Hughes PJ, McLellan H, Lowes DA, Khan SZ, Bilmen JG, Tovey SC, Godfrey RE, Michell RH, Kirk CJ, Michelangeli F. 2000. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum Ca2+ pumps. Biochem Biophys Res Commun 277(3):568-574. https://pubmed.ncbi.nlm.nih.gov/11061995/
Huybrechts et al., 2010. Long‐term dietary exposure to different food colours in young children living in different European countries. EFSA Supporting Publications, 7(5), 53E.
IARC, 1987. Monographs Supplement 7 (1987) - EPICHLOROHYDRIN https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-Supplements/Overall-Evaluations-Of-Carcinogenicity-An-Updating-Of-IARC-Monographs-Volumes-1%E2%80%9342-1987
IARC, 1999. Monographie Vol. 71 - Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Re-evaluation-Of-Some-Organic-Chemicals-Hydrazine-And-Hydrogen-Peroxide-Part-1-Part-2-Part-3--1999
IARC, 1999. Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 73. https://publications.iarc.fr/91
IARC, 2010. Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins. Volume 94. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Ingested-Nitrate-And-Nitrite-And-Cyanobacterial-Peptide-Toxins-2010
IARC, 2012. Some chemicals present in industrial and consumer products, food and drinking-water, Volume 101, Iarc monographs on the evaluation of carcinogenic risks to humans. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Chemicals-Present-In-Industrial-And-Consumer-Products-Food-And-Drinking-water-2012
IARC, 2013. Monographs on the evaluation of carcinogenic risks to humans, 101, 9. No. 101. 4-METHYLIMIDAZOLE.
IARC, 2015. Monographs evaluate consumption of red meat and processed meat. https://www.iarc.who.int/wp-content/uploads/2018/07/pr240_E.pdf
IARC, 2018. Agents Classified by the IARC Monographs, Volumes 1–123 https://monographs.iarc.who.int/wp-content/uploads/2018/09/ClassificationsAlphaOrder.pdf
IARC, 2018. Monographs Evaluation of the carcinogenicity of benzene., vol 120 (in press) https://www.iarc.who.int/news-events/iarc-monographs-volume-120-benzene/
IARC, 2018. Monographs volume 73 https://monographs.iarc.fr/wp-content/uploads/2018/06/mono73-22.pdf
IARC, 2019. Agents Classified by the IARC Monographs, Volumes 1–123, 2019 IARC, Lyon, France (2019) https://monographs.iarc.who.int/wp-content/uploads/2019/02/List_of_Classifications.pdf
IARC, 2024. Aspartame, Methyleugenol, and Isoeugenol. IARC Monographs on the Identification of Carcinogenic Hazards to Humans Volume 134. https://publications.iarc.who.int/627
Inan-Eroglu, E.; Ayaz, A. Is Aluminum Exposure a Risk Factor for Neurological Disorders? J Res Med Sci 2018, 23, 51.
INRS, 2001. Nitrite de sodium - Fiche toxicologique n°169. https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_169
Insawang et al., 2012. Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutrition & metabolism, 9(1), 50.
INSERM, 2023. Association Between the Consumption of Food Additive Emulsifiers and the Risk of Cardiovascular Disease. https://presse.inserm.fr/en/association-entre-la-consommation-dadditifs-alimentaires-emulsifiants-et-le-risque-de-maladies-cardiovasculaires/67433/
INSERM, 2024. The consumption of certain food additive emulsifiers may increase the risk of cancer. https://presse.inserm.fr/en/la-consommation-de-certains-additifs-alimentaires-emulsifiants-serait-associee-a-un-risque-accru-de-cancers/68077/
Iolascon A, Bianchi P, Andolfo I, Russo R, Barcellini W et al, (2021). Recommendations for diagnosis and treatment of methemoglobinemia. Am J Hematol. SWG of red cell and iron of EHA and EuroBloodNet. 2021 Dec 1;96(12):1666-1678. doi: 10.1002/ajh.26340. Epub 2021 Sep 23. PMID: 34467556; PMCID: PMC9291883. https://pmc.ncbi.nlm.nih.gov/articles/PMC9291883/
Irving, A. J., & Harvey, J. (2014). Leptin regulation of hippocampal synaptic function in health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130155.
Jackson, L. S. Chemical Food Safety Issues in the United States: Past, Present, and Future. Journal of Agricultural and Food Chemistry, 57(18), 8161–8170. https://pubs.acs.org/doi/10.1021/jf900628u
Jacobson MF. ; Petition to ban the use of Yellow 5 and other food dyes, in the interim to docket require a warning on foods containing these dyes, to correct the information the Food and Drug Administration gives to consumers on the impact of these dyes on the behavior of some children, and to require neurotoxicity testing of new food additives and food colors. (2008) https://www.cspinet.org/resource/cspi-petition-fda-re-food-dyes
Jacobson, M. F. (2012). Carcinogenicity and regulation of caramel colorings. International journal of occupational and environmental health, 18(3), 254-259.
JECFA - Evaluation of certain food additives and contaminants – 44th report.
Jecfa, 2017. Joint FAO/WHO Expert Committee on Food Additives Monography - BRILLIANT BLUE FCF
Jeong SH, Kim BY, Kang HG, Ku HO, Cho JH. 2005. Effects of butylated hydroxyanisole on the development and functions of reproductive system in rats. Toxicology 208(1):49-62.
Jih, D. M., Khanna, V., & Somach, S. C. (2003). Bromoderma after excessive ingestion of Ruby Red Squirt. New England Journal of Medicine, 348(19), 1932-1934.
Kägi MK, Wüthrich B and Johansson SGO, 1994. Campari-Orange anaphylaxis due to Carmine allergy. Lancet, 344, 60–61.
Kang HG, Jeong SH, Cho JH, Kim DG, Park JM, Cho MH (2005). Evaluation of estrogenic and androgenic activity of butylated hydroxyanisole in immature female and castrated rats. Toxicology. 2005 Sep 15;213(1-2):147-56. doi: 10.1016/j.tox.2005.05.027. PMID: 16023279.
Karimi, F., Anari, H., Yousefi Nejad, A., Karbalay-Doust, S., & Naseh, M. (2022). Post-weaning exposure to Sunset Yellow FCF induces behavioral impairment and structural changes in the adult rat medial prefrontal cortex: Protective effects of Coenzyme Q10. International Journal of Developmental Neuroscience, 82(4), 303–313. https://doi.org/10.1002/jdn.10178
Khezerlou, A., Akhlaghi, A. pouya, Alizadeh, A. M., Dehghan, P., & Maleki, P. (2022). Alarming impact of the excessive use of tert-butylhydroquinone in food products: A narrative review. In Toxicology Reports (Vol. 9, pp. 1066–1075). Elsevier Inc. https://doi.org/10.1016/j.toxrep.2022.04.027
Khoshnoud, M. J., Siavashpour, A., Bakhshizadeh, M., & Rashedinia, M. (2018). Effects of sodium benzoate, a commonly used food preservative, on learning, memory, and oxidative stress in brain of mice. Journal of biochemical and molecular toxicology, 32(2), e22022. https://pubmed.ncbi.nlm.nih.gov/29243862/
Kimilu N, Gładyś-Cieszyńska K, Pieszko M, Mańkowska-Wierzbicka D, Folwarski M. Carrageenan in the Diet: Friend or Foe for Inflammatory Bowel Disease? Nutrients. 2024 Jun 6;16(11):1780. doi: 10.3390/nu16111780. PMID: 38892712; PMCID: PMC11174395. https://pubmed.ncbi.nlm.nih.gov/38892712/
Koehler SM, Glaros A. The effect of aspartame on migraine headache. Headache. 1988 Feb ;28(1) :10-4. https://pubmed.ncbi.nlm.nih.gov/3277925/
Kus, E., & Eroglu, H. E. (2015). Genotoxic and cytotoxic effects of sunset yellow and brilliant blue, colorant food additives, on human blood lymphocytes. Pakistan journal of pharmaceutical sciences, 28(1).
Lalita K. Gardner and Glen D. Lawrence, Benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition-metal catalyst, Journal of Agricultural and Food Chemistry (1993) 41 (5), 693-695. DOI: 10.1021/jf00029a001 https://pubs.acs.org/doi/10.1021/jf00029a001
Lamas, B., Breyner, N. M., Malaisé, Y., Wulczynski, M., Galipeau, H. J., Gaultier, E., Cartier, C., Verdu, E. F., & Houdeau, E. (2024). Evaluating the effects of chronic oral exposure to the food additive silicon dioxide on oral tolerance induction and food sensitivities in mice. Environmental Health Perspectives, 132(2), Article EHP12758. https://ehp.niehs.nih.gov/doi/10.1289/EHP12758
Lamiaa El-Shennawy, Maher Abd El-naby Kamel, Asmaa Hassan Younis Khalaf, Mokhtar Ibrahim Yousef, Dose-dependent reproductive toxicity of sodium benzoate in male rats: Inflammation, oxidative stress and apoptosis, Reproductive Toxicology, Volume 98, Pages 92-98, ISSN 0890-6238 (2020). https://doi.org/10.1016/j.reprotox.2020.08.014
Lamiaa El-Shennawy, Maher Abd El-naby Kamel, Asmaa Hassan Younis Khalaf, Mokhtar Ibrahim Yousef, Dose-dependent reproductive toxicity of sodium benzoate in male rats: Inflammation, oxidative stress and apoptosis, Reproductive Toxicology, Volume 98, Pages 92-98, ISSN 0890-6238 (2020). https://pubmed.ncbi.nlm.nih.gov/32911041/
Lanigan, R. S., & Yamarik, T. A. (2002). Final report on the safety assessment of EDTA, calcium disodium EDTA, diammonium EDTA, dipotassium EDTA, disodium EDTA, TEA-EDTA, tetrasodium EDTA, tripotassium EDTA, trisodium EDTA, HEDTA, and trisodium HEDTA. International journal of toxicology, 21, 95-142.
Lee HW, Osis G, Handlogten ME, Guo H, Verlander JW, Weiner ID. Effect of dietary protein restriction on renal ammonia metabolism. Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1463-73. (2015)\n https://pubmed.ncbi.nlm.nih.gov/25925252/
Lee J-A, Kim M-K, Kim H-M, et al. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices. International Journal of Nanomedicine. 2015;10:2273-2293.
Lenhart A, Chey WD. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Adv Nutr ;8(4):587-596. PMID: 28710145; PMCID: PMC5508768.\n https://doi.org/10.3945/an.117.015560
Lennerz, B. S., Vafai, S. B., Delaney, N. F., Clish, C. B., Deik, A. A., Pierce, K. A., ... & Mootha, V. K. (2015). Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Molecular genetics and metabolism, 114(1), 73-79. https://pubmed.ncbi.nlm.nih.gov/25497115/
Léonard, A.; Gerber, G. B. Mutagenicity, Carcinogenicity and Teratogenicity of Aluminium. Mutat. Res. 1988, 196 (3), 247–257.
Lerner, A., & Matthias, T. (2015). Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity reviews, 14(6), 479-489. https://pubmed.ncbi.nlm.nih.gov/25676324/
Lertrit, A., Srimachai, S., Saetung, S., Chanprasertyothin, S., Chailurkit, L. O., Areevut, C., ... & Sriphrapradang, C. (2018). Effects of sucralose on insulin and glucagon-like peptide-1 secretion in healthy subjects: a randomized, double-blind, placebo-controlled trial. Nutrition, 55, 125-130. https://doi.org/10.1016/j.nut.2018.04.001
Lewerenz, J., & Maher, P. (2015). Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence?. Frontiers in neuroscience, 9, 469.
Li J., Zhu S., Lv Z., Dai H., Wang Z., Wei Q., Hamdard E., Mustafa S., Shi F., Fu Y. Drinking Water with Saccharin Sodium Alters the Microbiota-Gut-Hypothalamus Axis in Guinea Pig. Animals. 2021;11:1875. https://www.mdpi.com/2076-2615/11/7/1875
Lin, C. H., Li, H. Y., Wang, S. H., Chen, Y. H., Chen, Y. C., & Wu, H. T. (2021). Consumption of non-nutritive sweetener, acesulfame potassium exacerbates atherosclerosis through dysregulation of lipid metabolism in apoe−/− mice. Nutrients, 13(11), 3984. https://doi.org/10.3390/nu13113984
Lipton et al., 1989. Aspartame as a dietary trigger of headache. 29. 90 – 92. 10.1111/j.1526-4610.1989.hed2902090.x. https://pubmed.ncbi.nlm.nih.gov/2708042/
Litman EA., Gortmaker SL., Ebbeling CB., Ludwig DS. Source of bias in sugar-sweetened beverage research: a systematic review. Public Health Nutr. 2018 Aug;21(12):2345-2350. doi: 10.1017/S1368980018000575. Epub 2018 Mar 26. PMID: 29576024; PMCID: PMC6063770. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063770/
Liu, Y., Li, X., Wu, Y., Su, Q., Qin, L., & Ma, J. (2022). The Associations between Maternal Serum Aspartame and Sucralose and Metabolic Health during Pregnancy. Nutrients, 14(23), 5001. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740469/
Loayza, J. J. J., Kang, S., Schooth, L., Teh, J. J., de Klerk, A., Noon, E. K., … Morrison, M. (2023). Effect of food additives on key bacterial taxa and the mucosa-associated microbiota in Crohn’s disease. The ENIGMA study. Gut Microbes, 15(1). https://doi.org/10.1080/19490976.2023.2172670
Lucová, M.; Hojerová, J.; Pažoureková, S.; Klimová, Z. Absorption of triphenylmethane dyes Brilliant Blue and Patent Blue through intact skin, shaven skin and lingual mucosa from daily life products. Food Chem. Toxicol. 2013, 52, 19–27. https://pubmed.ncbi.nlm.nih.gov/23127598/
Magnuson, B. A., Roberts, A., & Nestmann, E. R. (2017). Critical review of the current literature on the safety of sucralose. Food and Chemical Toxicology, 106, 324-355. https://pubmed.ncbi.nlm.nih.gov/28558975/
Maki Takeda, Keisuke Oyama, Norio Kamemura, Kaori Kanemaru, Keizo Yuasa, Kumio Yokoigawa, Yasuo Oyama, Change in plasma membrane potential of rat thymocytes by tert-butylhydroquinone, a food additive: Possible risk on lymphocytes, Food and Chemical Toxicology, Volume 109, Part 1, 2017, Pages 296-301. https://doi.org/10.1016/j.fct.2017.09.017
Mäkinen KK, Söderling E, Miettinen TA. Gastrointestinal disturbances associated with the consumption of sugar-alcohol sweetened foods: Onset, duration, and intensity of symptoms. Regulatory Toxicology and Pharmacology. 2003 Aug; 38(1): 23-32.
Mandrioli D., Kearns CE., Bero LA. Relationship between Research Outcomes and Risk of Bias, Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews. PLoS One. 2016 Sep 8;11(9):e0162198. doi: 10.1371/journal.pone.0162198. Erratum in: PLoS One. 2020 Mar 10;15(3):e0230469. doi: 10.1371/journal.pone.0230469. PMID: 27606602; PMCID: PMC5015869. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015869/
Marco Witkowski, Jennifer Wilcox, Valesha Province, Zeneng Wang, Ina Nemet, W.H. Wilson Tang and Stanley L. Hazen (2024). Ingestion of the Non-Nutritive Sweetener Erythritol, but Not Glucose, Enhances Platelet Reactivity and Thrombosis Potential in Healthy Volunteers—Brief Report. Arteriosclerosis, Thrombosis, and Vascular BiologyVolume 44, Issue 9, September 2024; Pages 2136-2141. https://www.ahajournals.org/doi/10.1161/ATVBAHA.124.321019
Martínez, M. A., Martínez-Larrañaga, M. R., Castellano, V., Martínez, M., Ares, I., Romero, A., & Anadón, A. (2013). Effect of natamycin on cytochrome P450 enzymes in rats. Food and chemical toxicology, 62, 281-284.
Martino et al. (2017). The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Frontiers in pediatrics, 5, 96.
Mathur NRA, Chaudhary V, Mehta M and Krishnatrey R, (2005). Effect of Sunset Yellow on testis in rats. J. Ecophysiol. Occup. Health, 5, 1-3. https://www.researchgate.net/publication/289302658_Effect_of_sunset_yellow_on_testis_in_rats
Mathur, NRA, Chaudhary V, Mehta M and Gupta S, 2005b. Sunset Yellow induced changes in the lipid profile in male albino rat. Biochem. Cell. Arch., 5, 197-200.
Maya, S.; Prakash, T.; Madhu, K. D.; Goli, D. Multifaceted Effects of Aluminium in Neurodegenerative Diseases: A Review. Biomed. Pharmacother. 2016, 83, 746–754.
Mbambo, N. P., Dlamini, S. N., Chukwuma, C. I., & Islam, M. S. (2020). Comparative effects of commonly used commercially available non‐nutritive sweeteners on diabetes‐related parameters in non‐diabetic rats. Journal of Food Biochemistry, 44(11), e13453. https://pubmed.ncbi.nlm.nih.gov/32869881/
McCann et al., 2007. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. The lancet, 370(9598), 1560-1567. https://pubmed.ncbi.nlm.nih.gov/17825405/
Mehedi N, Ainad-Tabet S, Mokrane N, Addou S, Zaoui C, Kheroua O, Saidi D (2009). Reproductive Toxicology of Tartrazine (FD and C Yellow No. 5) in Swiss Albino Mice. Am J Pharmacol Toxicol. 4(4):130-135 https://thescipub.com/pdf/ajptsp.2009.130.135.pdf
Méndez-García, L. A., Bueno-Hernández, N., Cid-Soto, M. A., De León, K. L., Mendoza-Martínez, V. M., Espinosa-Flores, A. J., ... & Escobedo, G. (2022). Ten-Week Sucralose Consumption Induces Gut Dysbiosis and Altered Glucose and Insulin Levels in Healthy Young Adults. Microorganisms, 10(2), 434. https://doi.org/10.3390/microorganisms10020434
Mendoza-Pérez, S., García-Gómez, R. S., & Durán-Domínguez-de-Bazúa, M. D. C. (2022). Chronic intake of nutritive sweeteners and saccharin increases levels of glycolytic and lipogenic enzymes in rat liver. International Journal of Food Sciences and Nutrition, 73(7), 927-939. https://pubmed.ncbi.nlm.nih.gov/35708269/
Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives https://pubmed.ncbi.nlm.nih.gov/22176942
Mi Y, Chin YX, Cao WX, Chang YG, Lim PE, Xue CH, Tang QJ. Native κ-carrageenan induced-colitis is related to host intestinal microecology. Int J Biol Macromol. 2020 Mar 15;147:284-294. doi: 10.1016/j.ijbiomac.2020.01.072. Epub 2020 Jan 8. PMID: 31926226. https://pubmed.ncbi.nlm.nih.gov/31926226/
Michils, A., Vandermoten, G., Duchateau, J., & Yernault, J. C. (1991). Anaphylaxis with sodium benzoate. The Lancet, 337(8754), 1424-1425. https://pubmed.ncbi.nlm.nih.gov/1674808/
Mihalache, O. A., & Dall’Asta, C. (2023). Food processing contaminants: Dietary exposure to 3-MCPD and glycidol and associated burden of disease for Italian consumers. Environmental Research, 234. https://doi.org/10.1016/j.envres.2023.116559
Miller, M.D., Steinmaus, C., Golub, M.S. et al. Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence. Environ Health 21, 45 (2022). https://doi.org/10.1186/s12940-022-00849-9
Millstone EP, Dawson E. EFSA’s toxicological assessment of aspartame : was it - even-handedly trying to identify possible unreliable positives and unreliable - negatives ? Arch Public Health. 2019 Jul 15 ;77 :34. https://pubmed.ncbi.nlm.nih.gov/31338189/
Mohamed AA, Galal AA, Elewa YH. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem. 2015 Sep;117(7):649-58. doi: 10.1016/j.acthis.2015.07.002. Epub 2015 Jul 17. PMID: 26190785. https://pubmed.ncbi.nlm.nih.gov/26190785/
Mold M, Cottle J, Exley C. Aluminium in Brain Tissue in Epilepsy: A Case Report from Camelford. Int J Environ Res Public Health. 2019 Jun 16;16(12):2129. doi: 10.3390/ijerph16122129. PMID: 31208130; PMCID: PMC6616903. https://pmc.ncbi.nlm.nih.gov/articles/PMC6616903/
Mold M, Umar D, King A, Exley C. Aluminium in brain tissue in autism. J Trace Elem Med Biol. 2018 Mar;46:76-82. doi: 10.1016/j.jtemb.2017.11.012. Epub 2017 Nov 26. PMID: 29413113. https://pubmed.ncbi.nlm.nih.gov/29413113/
Morales-Ríos, E. I., García-Machorro, J., Briones-Aranda, A., Gómez-Pliego, R., & Espinosa-Raya, J. (2022). Effect of Long-Term Intake of Nutritive and Non-Nutritive Sweeteners on Metabolic Health and Cognition in Adult Male Rats. Journal of Medicinal Food, 25(11), 1059-1065. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700333/
Moshfegh AJ, Kovalchik AF, Clemens JC. Phosphorus Intake of the U.S. Population: - What We Eat in America, NHANES 2011-2012. Food Surveys Research Group Dietary Data Brief No. 15. September 2016.
Motwadie, M.E., Hashem, M.M., Abo-El-Sooud, K., Abd-Elhakim, Y.M., El-Metwally, A. E., Ali, H.A., 2021. Modulation of immune functions, inflammatory response, and cytokine production following long-term oral exposure to three food additives; thiabendazole, monosodium glutamate, and brilliant blue in rats. Int. Immunopharm. 98 (March), 107902 https://doi.org/10.1016/j. intimp.2021.107902. https://pubmed.ncbi.nlm.nih.gov/34182247/
Mujika, J. I.; Ruipérez, F.; Infante, I.; Ugalde, J. M.; Exley, C.; Lopez, X. Pro-Oxidant Activity of Aluminum: Stabilization of the Aluminum Superoxide Radical Ion. J Phys Chem A 2011, 115 (24), 6717–6723.
Mukherjee, A., & Chakrabarti, J. (1997). In vivo cytogenetic studies on mice exposed to acesulfame-K—a non-nutritive sweetener. Food and Chemical Toxicology, 35(12), 1177-1179. https://doi.org/10.1016/s0278-6915(97)85469-5
Murali, A., Giri, V., Cameron, H. J., Sperber, S., Zickgraf, F. M., Haake, V., ... & van Ravenzwaay, B. (2022). Investigating the gut microbiome and metabolome following treatment with artificial sweeteners acesulfame potassium and saccharin in young adult Wistar rats. Food and Chemical Toxicology, 113123. https://pubmed.ncbi.nlm.nih.gov/35588986/
Nagata et al., 2006. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim, 55(2), 109-15.
Nahok K, Phetcharaburanin J, Li JV, Silsirivanit A, Thanan R, Boonnate P, Joonhuathon J, Sharma A, Anutrakulchai S, Selmi C, Cha'on U. Monosodium Glutamate Induces Changes in Hepatic and Renal Metabolic Profiles and Gut Microbiome of Wistar Rats. Nutrients. 2021 May 30;13(6):1865. https://pubmed.ncbi.nlm.nih.gov/34070818/
Naimi S, Viennois E, Gewirtz AT, Chassaing B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome. Mar 22;9(1):66. PMID: 33752754; PMCID: PMC7986288.\n https://doi.org/10.1186/s40168-020-00996-6
Naimi, S., Viennois, E., Gewirtz, A.T. et al. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66 (2021). https://doi.org/10.1186/s40168-020-00996-6
Nam et al. Additive or synergistic effects of aluminum on the reduction of neural stem cells, cell proliferation, and neuroblast differentiation in the dentate gyrus of high-fat diet-fed mice. Biol Trace Elem Res. 2014 Jan;157(1):51-9.
Neale BW, Mesler EL, Young M, Rebuck JA, Weise WJ. Propylene Glycol–Induced Lactic Acidosis in a Patient with Normal Renal Function: A Proposed Mechanism and Monitoring Recommendations. Annals of Pharmacotherapy. 2005;39(10):1732-1736. doi:10.1345/aph.1G083 https://pubmed.ncbi.nlm.nih.gov/16159998/
Németh, K.; Petschner, P.; Pálóczi, K.; Fekete, N.; Pállinger, É.; Buzás, E.I.; Tamási, V. Chronic Exposure to the Food Additive tBHQ Modulates Expression of Genes Related to SARS-CoV-2 and Influenza Viruses. Life 2022, 12, 642. https://doi.org/10.3390/life12050642
Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 2009 Apr;32(4):688-94. https://pubmed.ncbi.nlm.nih.gov/19151203/
Nettleton, J. E., Cho, N. A., Klancic, T., Nicolucci, A. C., Shearer, J., Borgland, S. L., ... & Reimer, R. A. (2020). Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut, 69(10), 1807-1817. http://dx.doi.org/10.1136/gutjnl-2018-317505
Nettleton, J. E., Klancic, T., Schick, A., Choo, A. C., Shearer, J., Borgland, S. L., ... & Reimer, R. A. (2019). Low-dose stevia (rebaudioside A) consumption perturbs gut microbiota and the mesolimbic dopamine reward system. Nutrients, 11(6), 1248. https://doi.org/10.3390/nu11061248
Nigg JT, Lewis K, Edinger T, Falk M. Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. J Am Acad Child Adolesc Psychiatry. 2012 Jan;51(1):86-97.e8. doi: 10.1016/j.jaac.2011.10.015. PMID: 22176942; PMCID: PMC4321798. https://pubmed.ncbi.nlm.nih.gov/22176942/
Norio Kamemura, Butylated hydroxytoluene, a food additive, modulates membrane potential and increases the susceptibility of rat thymocytes to oxidative stress, Computational Toxicology, Volume 6, 2018, Pages 32-38, ISSN 2468-1113. https://www.sciencedirect.com/science/article/abs/pii/S2468111318300288
NTP, 2005. Toxicology studies of acesulfame potassium (CAS No. 55589-62-3) in genetically modified (FVB Tg.AC Hemizygous) mice and carcinogenicity studies of acesulfame potassium in genetically modified [B6.129-Trp53(tm1Brd) (N5) Haploinsufficient] mice (feed studies)mice. Natl Toxicol Program Genet Modif Model Rep. 2005 Oct;(2):1-113. https://ntp.niehs.nih.gov/publications/reports/gmm/gmm02/index.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=gmm02abs
NTP, 2007. Toxicology and carcinogenesis studies of 4-methylimidazole (Cas No. 822-36-6) in F344/N rats and B6C3F1 mice (feed studies). National Toxicology Program technical report series, (535), 1.
Nusaiba S, Fatima SA, Hussaini G, Mikail HG. Anaemogenic, Obesogenic and Thermogenic Potentials of Graded Doses of Monosodium Glutamate Sub-acutely Fed to Experimental Wistar Rats. Curr Clin Pharmacol. 2018;13(4):273-278. doi: 10.2174/1574884713666181002120657. PMID: 30277163. https://pubmed.ncbi.nlm.nih.gov/30277163/
Obayashi, Y., & Nagamura, Y. (2016). Does monosodium glutamate really cause headache?: a systematic review of human studies. The journal of headache and pain, 17(1), 54.
OEHHA, 2019. State of california environmental protection agency office of environmental health hazard assessment. chemicals known to the state to cause cancer or reproductive toxicity. June 28, 2019
Office of Environmental Health Hazard Assessment (OEHHA). (April 2021). Health Effects Assessment: Potential Neurobehavioral Effects of Synthetic Food Dyes in Children. California Environmental Protection Agency. https://oehha.ca.gov/risk-assessment/report/health-effects-assessment-potential-neurobehavioral-effects-synthetic-food
Ogawa T, Okumura R, Nagano K, Minemura T, Izumi M, Motooka D, Nakamura S, Iida T, Maeda Y, Kumanogoh A, Tsutsumi Y, Takeda K. Oral intake of silica nanoparticles exacerbates intestinal inflammation. Biochem Biophys Res Commun. 2021 Jan 1;534:540-546.
Olivier-Van Stichelen, S., Rother, K. I., & Hanover, J. A. (2019). Maternal exposure to non-nutritive sweeteners impacts progeny’s metabolism and microbiome. Frontiers in microbiology, 10, 1360. https://doi.org/10.3389/fmicb.2019.01360
Olsen P, Meyer O, Bille N, Würtzen G. Carcinogenicity study on butylated hydroxytoluene (BHT) in Wistar rats exposed in utero. Food Chem Toxicol. 1986 Jan;24(1):1-12. doi: 10.1016/0278-6915(86)90256-5. PMID: 3949264. https://pubmed.ncbi.nlm.nih.gov/3949264/
Organization for Economic Co-operation and Development (OECD). SIDS initial assessment report for SIAM 24, Paris, France, 17-20 April 2007. Phosphate category: Monoammonium phosphate (MAP), Diammonium phosphate (DAP), Ammonium polyphosphate (APP), Single superphosphate (SSP), Triple superphosphate (TSP). \n https://hpvchemicals.oecd.org/UI/handler.axd?id=a394f471-d429-4a3a-a4cc-556e354363b7
Oscarsson, E.; Lindberg, T.; Zeller, K.S.; Lindstedt, M.; Agardh, D.; Håkansson, Å.; Östbring, K. Changes in Intestinal Permeability Ex Vivo and Immune Cell Activation by Three Commonly Used Emulsifiers. Molecules (2020), 25, 5943. https://doi.org/10.3390/molecules25245943
Pacor, M. L., Di Lorenzo, G., Martinelli, N., Mansueto, P., Rini, G. B., & Corrocher, R. (2004). Monosodium benzoate hypersensitivity in subjects with persistent rhinitis. Allergy, 59(2), 192-197. https://pubmed.ncbi.nlm.nih.gov/14763933/
Pałkowska-Goździk, E., Bigos, A., & Rosołowska-Huszcz, D. (2018). Type of sweet flavour carrier affects thyroid axis activity in male rats. European journal of nutrition, 57(2), 773-782. https://doi.org/10.1007/s00394-016-1367-x
Pandir, D (2016). DNA damage in human germ cell exposed to the some food additives in vitro. Cytotechnology 68, 725–733 https://doi.org/10.1007/s10616-014-9824-y
Panyod, S., Wu, WK., Chang, CT. et al (2024). Common dietary emulsifiers promote metabolic disorders and intestinal microbiota dysbiosis in mice. Commun Biol 7, 749. https://doi.org/10.1038/s42003-024-06224-3
Pasqualli, T., Chaves, P. E. E., Pereira, C. L. D. V., Serpa, E. A., Oliveira, L. F. S. D., & Machado, M. M. (2020). Steviol, the active principle of the stevia sweetener, causes a reduction of the cells of the immunological system even consumed in low concentrations. Immunopharmacology and Immunotoxicology, 42(5), 504-508. https://doi.org/10.1080/08923973.2020.1811309
Pasqualli, T., E Chaves, P. E., da Veiga Pereira, L., Adílio Serpa, É., de Oliveira, L. F. S., & Machado, M. M. (2020). Sucralose causes non‐selective CD4 and CD8 lymphotoxicity via probable regulation of the MAPK8/APTX/EID1 genes: An in vitro/in silico study. Clinical and Experimental Pharmacology and Physiology, 47(10), 1751-1757. https://doi.org/10.1111/1440-1681.13362
Pecquet C, 2013. Allergic reactions to insect secretions. European Journal of Dermatology, 23, 767–773.
Pepino, M. Y., Tiemann, C. D., Patterson, B. W., Wice, B. M., & Klein, S. (2013). Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes care, 36(9), 2530-2535. https://doi.org/10.2337/dc12-2221
Peters RJ, van Bemmel G, Herrera-Rivera Z, Helsper HP, Marvin HJ, Weigel S, Tromp PC, Oomen AG, Rietveld AG, Bouwmeester H. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem. 2014 Jul 9;62(27):6285-93. doi: 10.1021/jf5011885. Epub 2014 Jun 30. PMID: 24933406. https://pubmed.ncbi.nlm.nih.gov/24933406/
Piper, J., & Piper, P. (2017). Benzoate and Sorbate Salts: A Systematic Review of the Potential Hazards of These Invaluable Preservatives and the Expanding Spectrum of Clinical Uses for Sodium Benzoate. Comprehensive reviews in food science and food safety, 16 5, 868-880. https://doi.org/10.1111/1541-4337.12284
Plows, J. F., Morton-Jones, J., Bridge-Comer, P. E., Ponnampalam, A., Stanley, J. L., Vickers, M. H., & Reynolds, C. M. (2020). Consumption of the artificial sweetener acesulfame potassium throughout pregnancy induces glucose intolerance and adipose tissue dysfunction in mice. The Journal of Nutrition, 150(7), 1773-1781. https://doi.org/10.1093/jn/nxaa106
Prasedya ES, Miyake M, Kobayashi D, Hazama A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by FUCCI imaging. BMC Complement Altern Med. 2016 Aug 4;16:270. https://pubmed.ncbi.nlm.nih.gov/27487950/
Price, J. M., Biava, C. G., Oser, B. L., Vogin, E. E., Steinfeld, J., & Ley, H. L. (1970). Bladder tumors in rats fed cyclohexylamine or high doses of a mixture of cyclamate and saccharin. Science, 167(3921), 1131-1132.
Proquin H, Rodríguez-Ibarra C, Moonen CG, Urrutia Ortega IM, Briedé JJ, de Kok TM, van Loveren H, Chirino YI. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis. 2017 Jan;32(1):139-149. doi: 10.1093/mutage/gew051. Epub 2016 Oct 27. Erratum in: Mutagenesis. 2018 Sep 17;33(3):267-268. PMID: 27789654. https://pubmed.ncbi.nlm.nih.gov/27789654/
Qi Zhang, Alexander A. Chumanevich, Ivy Nguyen, Anastasiya A. Chumanevich, Nora Sartawi, Jake Hogan, Minou Khazan, Quinn Harris, Bryson Massey, Ioulia Chatzistamou, Phillip J. Buckhaults, Carolyn E. Banister, Michael Wirth, James R. Hebert, E. Angela Murphy, Lorne J. Hofseth, The synthetic food dye, Red 40, causes DNA damage, causes colonic inflammation, and impacts the microbiome in mice, Toxicology Reports, Volume 11, 2023, Pages 221-232, ISSN 2214-7500 https://www.sciencedirect.com/science/article/pii/S2214750023000926?via%3Dihub
Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective - A review. J Adv Res. 2017;8(5):495-511.
Rebholz, C. M., Yu, B., Zheng, Z., Chang, P., Tin, A., Köttgen, A., Wagenknecht, L. E., Coresh, J., Boerwinkle, E., & Selvin, E. (2018). Serum metabolomicprofile of incident diabetes. Diabetologia, 61(5), 1046–105. https://pubmed.ncbi.nlm.nih.gov/29556673/
Règlement (UE) 2018/1481 de la Commission du 4 octobre 2018, modifiant les annexes II et III du règlement (CE) n° 1333/2008 du Parlement européen et du Conseil et l'annexe du règlement (UE) n° 231/2012 de la Commission en ce qui concerne le gallate d'octyle (E 311) et le gallate de dodécyle (E 312) https://eur-lex.europa.eu/eli/reg/2018/1481/oj/fra?eliuri=eli%3Areg%3A2018%3A1481%3Aoj&locale=en
Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32011R1169
Rencüzoğullari, E., Azirak, S., Canimoglu, S., Parlak, S., & Buyukleyla, M. (2009). Effects of natamycin on sister chromatid exchanges, chromosome aberrations and micronucleus in human lymphocytes. Drug and Chemical Toxicology, 32(1), 47-52.
Report on “Stability of sorbic acid (E 200) and its potassium salt (E 202) during food processing and storage”. Celanese Europe B.V. Review submitted to EFSA by EC on 23 October 2018
Réseau Environnement Santé. Communiqué de presse. Aspartame : l’avis de l’EFSA enfreint les règles de la déontologie de l’expertise et rejette les données scientifiques récentes (cancer, prématurité, troubles cognitifs, effets métaboliques). https://www.reseau-environnement-sante.fr/communique-de-presse-18-fevrier-2013-aspartame-lavis-de-lefsa-enfreint-les-regles-de-la-deontologie-de-lexpertise-et-rejette-les-donnees-scientifiques-recentes/
Risdon, S., Meyer, G., Marziou, A., Riva, C., Roustit, M., & Walther, G. (2020). Artificial sweeteners impair endothelial vascular reactivity: Preliminary results in rodents. Nutrition, Metabolism and Cardiovascular Diseases, 30(5), 843-846. https://doi.org/10.1016/j.numecd.2020.01.014
Ritz E et al., 2012. Phosphate additives in food--a health risk. Dtsch Arztebl Int 2012; 109(4): 49–55. https://pubmed.ncbi.nlm.nih.gov/22334826/
Romo-Romo, A., Aguilar-Salinas, C. A., Brito-Córdova, G. X., Gómez-Díaz, R. A., & Almeda-Valdes, P. (2018). Sucralose decreases insulin sensitivity in healthy subjects: a randomized controlled trial. The American journal of clinical nutrition, 108(3), 485-491. https://doi.org/10.1093/ajcn/nqy152
Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J., & Gil, A. (2019). Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Advances in Nutrition, 10(suppl_1), S31-S48. https://pubmed.ncbi.nlm.nih.gov/30721958/
Ruud Peters, Evelien Kramer, Agnes G. Oomen, Zahira E. Herrera Rivera, Gerlof Oegema, Peter C. Tromp, Remco Fokkink, Anton Rietveld, Hans J. P. Marvin, Stefan Weigel, Ad A. C. M. Peijnenburg, and Hans Bouwmeester, Presence of Nano-Sized Silica during In Vitro Digestion of Foods Containing Silica as a Food Additive, ACS Nano 2012 6 (3), 2441-2451, DOI: 10.1021/nn204728k https://pubmed.ncbi.nlm.nih.gov/22364219/
Saiyed, S. M., & Yokel, R. A. (2005). Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Additives & Contaminants, 22(3), 234–244. https://doi.org/10.1080/02652030500073584
Salame, C., Javaux, G., Sellem, L., Viennois, E., Szabo de Edelenyi, F., Agaësse, C., De Sa, A., Huybrechts, I., Pierre, F., Coumoul, X., Julia, C., Kesse-Guyot, E., Allès, B., Fezeu, L. K., Hercberg, S., Deschasaux-Tanguy, M., Cosson, E., Tatulashvili, S., Chassaing, B., Srour, B., & Touvier, M. (2024). Food additive emulsifiers and the risk of type 2 diabetes: Analysis of data from the NutriNet-Santé prospective cohort study. The Lancet Diabetes & Endocrinology, 12(5), 339-349. https://doi.org/10.1016/S2213-8587(24)00086-X
Santos, P. S., Caria, C. R. P., Gotardo, E. M. F., Ribeiro, M. L., Pedrazzoli, J., & Gambero, A. (2018). Artificial sweetener saccharin disrupts intestinal epithelial cells’ barrier function in vitro. Food & function, 9(7), 3815-3822. https://doi.org/10.1039/c8fo00883c
SCCS, 2024. SCCS (2024) - Opinion on the safety of aluminium in cosmetic products - Submission IV https://health.ec.europa.eu/document/download/cad5a8dd-c3b1-4cb2-b21d-0afdc7bd886b_en?filename=sccs_o_284.pdf
SCF (Scientific Committee on Food), 2000. Revised opinion on cyclamic acid and its sodium and calcium salts. https://food.ec.europa.eu/system/files/2020-12/sci-com_scf_out53_en.pdf
SCF (Scientific Committee on Food), 2002. Opinion of the Scientific Committee on Food on Benzoic acid https://ec.europa.eu/food/fs/sc/scf/out137_en.pdf
SCF, 2003. Opinion of the Scientific Committee on Food on Erythritol. European Commission, Health and Consumer Protection Directorate-General. SCF/CS/ADD/EDUL/215 Final. Opinion expressed on 5 March, 2003.
SCF, Scientific Committee on Food, 2000b. Annex I. Studies on glucose homeostasis in healthy humans and diabetic volunteers. In: Opinion of the Scientific Committee on Food on Sucralose (Opinion Expressed by the SCF on 7 September 2000) [Internet]. European Commission, Health & Consumer Protection Directorate-General, Scientific Committee on Food (SCF), Brussels (Belgium), pp. 21e22 [cited 2017 Jan 20]. (SCF/CS/ADD/EDUL/190 Final). https://food.ec.europa.eu/system/files/2020-12/sci-com_scf_out68_en.pdf
Schernhammer et al., 2012. Consumption of artificial sweetener–and sugar-containing soda and risk of lymphoma and leukemia in men and women. The American journal of clinical nutrition, 96(6), 1419-1428. https://pubmed.ncbi.nlm.nih.gov/23097267/
Secretan B, Straif K, Baan R, Grosse Y, El Ghissassi F, Bouvard V, et al. 2009. A review of human carcinogens— Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol 10(11): 1033-1034. https://pubmed.ncbi.nlm.nih.gov/19891056/
Sellem L, Srour B, Javaux G, Chazelas E, Chassaing B, et al. (2024) Food additive emulsifiers and cancer risk: Results from the French prospective NutriNet-Santé cohort. PLOS Medicine 21(2): e1004338. https://doi.org/10.1371/journal.pmed.1004338
Seventh Annual Report on Carcinogens. Environ Health Perspect. 1994 Sep;102(9):739. PMCID: PMC1567177 https://pmc.ncbi.nlm.nih.gov/articles/PMC1567177/
Shil A, Ladeira Faria LM, Walker CA and Chichger H (2024) The artificial sweetener neotame negatively regulates the intestinal epithelium directly through T1R3-signaling and indirectly through pathogenic changes to model gut bacteria. Front. Nutr. 11:1366409. https://pmc.ncbi.nlm.nih.gov/articles/PMC11078302/
Shil A., Chichger H. Artificial Sweeteners Negatively Regulate Pathogenic Characteristics of Two Model Gut Bacteria, E. coli and E. faecalis. Int. J. Mol. Sci. 2021;22:5228. https://www.mdpi.com/1422-0067/22/10/5228?ref=assuma-o-controle-de-sua-saude.com
Shimada et al., 2013. Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG). The journal of headache and pain, 14(1), 2.
Shirao, K., Inoue, M., Tokuda, R., Nagao, M., Yamaguchi, M., Okahata, H., & Fujisawa, T. (2013). Bitter sweet : a child case of erythritol-induced anaphylaxis. Allergology International, 62(2), 269-271.
Shukla RK, Kumar A, Vallabani NV, Pandey AK and Dhawan A. Titanium dioxide nanoparticle induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine (Lond), 9, 9. (2014) https://pubmed.ncbi.nlm.nih.gov/24367968/
Silva, M. M., & Lidon, F. C. (2016). An overview on applications and side effects of antioxidant food additives. Emirates Journal of Food and Agriculture, 823-832.
Simon, B. R., Parlee, S. D., Learman, B. S., Mori, H., Scheller, E. L., Cawthorn, W. P., ... & MacDougald, O. A. (2013). Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. Journal of Biological Chemistry, 288(45), 32475-32489. https://doi.org/10.1074/jbc.M113.514034
Smith, R.L., Cohen, S.M., Doull, J., Feron, V.J., Goodman, J.I., Marnett, L.J., Portoghese, P.S., Waddell, W.J., Wagner, B.M., & Adams, T.B. (2005). GRAS Flavoring Substances 22. Food Technology, 59 (8), 24-62.\n\n https://www.femaflavor.org/publications/gras-publications/gras-22
Soffritti et al., 2010. Aspartame administered in feed, beginning prenatally through life span, induces cancers of the liver and lung in male Swiss mice. American Journal of Industrial Medicine, 53(12), 1197-1206. https://pubmed.ncbi.nlm.nih.gov/20886530/
Soffritti et al., 2014. The carcinogenic effects of aspartame : The urgent need for regulatory re-evaluation. Am J Ind Med. 57. 10.1002/ajim.22296. https://pubmed.ncbi.nlm.nih.gov/24436139/
Soffritti, M., Padovani, M., Tibaldi, E., Falcioni, L., Manservisi, F., Lauriola, M., ... & Belpoggi, F. (2016). Sucralose administered in feed, beginning prenatally through lifespan, induces hematopoietic neoplasias in male swiss mice. International journal of occupational and environmental health, 22(1), 7. https://doi.org/10.1016/j.fct.2017.05.047
Solis-Medina, A., Martínez-Magaña, J. J., Quintanar-Jurado, V., Gallegos-Silva, I., Juárez-Rojop, I. E., Tovilla-Zárate, C. A., ... & Nicolini, H. (2018). Astrogliosis and decreased neural viability as consequences of early consumption of aspartame and acesulfame potassium in male Wistar rats. Metabolic Brain Disease, 33(6), 2031-2038. https://pubmed.ncbi.nlm.nih.gov/30264280/
Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. 1995. The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environ Health Perspect 103 (Suppl 7):113-122.
Stepien M., Duarte-Salles T., Fedirko V., Trichopoulou A., Lagiou P., Bamia C. et al. Consumption of soft drinks and juices and risk of liver and biliary tract cancers in a European cohort. Eur J Nutr. 2016;55(1):7–20. https://pubmed.ncbi.nlm.nih.gov/25528243/
Stiborová, M., Martínek, V., Rýdlová, H., Hodek, P., & Frei, E. (2002). Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Research, 62(20), 5678-5684. https://pubmed.ncbi.nlm.nih.gov/12384524/
Stohs, S. J., & Miller, M. J. (2014). A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides. Food and Chemical Toxicology, 63, 240-243.
Suez et al., 2014. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 70. 10.1038/nature13793. https://pubmed.ncbi.nlm.nih.gov/25231862/
Suez, J., Cohen, Y., Valdés-Mas, R., Mor, U., Dori-Bachash, M., Federici, S., … & Elinav, E. (2022). Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell, 185(18), 3307-3328. https://pubmed.ncbi.nlm.nih.gov/35987213/
Sweetman S.C. (ed.) Book: Martindale-The Complete Drug Reference. 36th ed. London: The Pharmaceutical Press, 2009., p. 1551\n
Sylvetsky, A. C., Sen, S., Merkel, P., Dore, F., Stern, D. B., Henry, C. J., ... & Hubal, M. J. (2020). Consumption of Diet Soda Sweetened with Sucralose and Acesulfame‐Potassium Alters Inflammatory Transcriptome Pathways in Females with Overweight and Obesity. Molecular nutrition & food research, 64(11), 1901166. https://doi.org/10.1002/mnfr.201901166
Tabar AI, Acero S, Arregui C, Urdánoz M, Quirce S. [Asthma and allergy due to carmine dye]. An Sist Sanit Navar. 2003;26 Suppl 2:65-73. Review. Spanish. PubMed PMID: 13679965.
Tabar et al., 2003. Asthma and allergy due to carmine dye. Anales del sistema sanitario de Navarra. 26 Suppl 2. 65-73.
Tanaka, T. (2006). Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food and Chemical Toxicology, 44(2), 179-187.
Tassinari, R., Cordelli, E., Eleuteri, P., Villani, P., Pacchierotti, F., Narciso, L., ... & Maranghi, F. (2021). Effects of sub-chronic oral exposure to pyrogenic synthetic amorphous silica (NM-203) in male and female Sprague-Dawley rats: focus on reproductive systems. Reproductive Toxicology, 105, 17-24.
Tassinari, R., Di Felice, G., Butteroni, C., Barletta, B., Corinti, S., Cubadda, F., ... & Maranghi, F. (2020). Hazard identification of pyrogenic synthetic amorphous silica (NM-203) after sub-chronic oral exposure in rat: A multitarget approach. Food and Chemical Toxicology, 137, 111168.
Tassinari, R., Martinelli, A., Valeri, M., & Maranghi, F. (2021). Amorphous silica nanoparticles induced spleen and liver toxicity after acute intravenous exposure in male and female rats. Toxicology and industrial health, 37(6), 328-335.
TemaNord, 2002. Food Additives in Europe 2000. Status of safety assessments of food additives presently permitted in the EU. TemaNord, 2002:560 https://www.talkingaboutthescience.com/studies/FoodAdditivesEurope.pdf
ter Veld MG, Schouten B, Louisse J, van Es DS, van der Saag PT, Rietjens IM, Murk AJ. Estrogenic potency of food-packaging-associated plasticizers and antioxidants as detected in ERalpha and ERbeta reporter gene cell lines. J Agric Food Chem. 2006 Jun 14;54(12):4407-16. doi: 10.1021/jf052864f. PMID: 16756374. https://pubmed.ncbi.nlm.nih.gov/16756374/
Terri Y. Lim, Robert L. Poole, Natalie M. Pageler; Propylene Glycol Toxicity in Children. The Journal of Pediatric Pharmacology and Therapeutics 1 October 2014; 19 (4): 277–282.\n https://doi.org/10.5863/1551-6776-19.4.277
The Association of UK Dietitians. Policy Statement. The Use of Artificial Sweeteners. https://www.bda.uk.com/static/11ea5867-96eb-43df-b61f2cbe9673530d/policystatementsweetners.pdf
The Cornucopia Institute. Carrageenan - New Studies Reinforce Link to Inflammation, Cancer and Diabetes. https://www.cornucopia.org/wp-content/uploads/2016/04/CarageenanReport-2016.pdf
The New York State Senate. Senate Bill S6055A. https://www.nysenate.gov/legislation/bills/2023/S6055/amendment/A
Tobacman, J K. “Review of harmful gastrointestinal effects of carrageenan in animal experiments” Environmental health perspectives vol. 109,10 (2001): 983-94. https://pmc.ncbi.nlm.nih.gov/articles/PMC1242073/
Toews I., Lohner S., Küllenberg de Gaudry D., Sommer H., Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019 Jan 2;364:k4718. doi: 10.1136/bmj.k4718. Erratum in: BMJ. 2019 Jan 15;364:l156. doi: 10.1136/bmj.l156. PMID: 30602577; PMCID: PMC6313893. https://pubmed.ncbi.nlm.nih.gov/30602577/
Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009 Nov 15;69(22):8784-9.
Tsan, L., Chometton, S., Hayes, A. M., Klug, M. E., Zuo, Y., Sun, S., ... & Schier, L. A. (2022). Early-life low-calorie sweetener consumption disrupts glucose regulation, sugar-motivated behavior, and memory function in rats. JCI insight, 7(20). https://doi.org/10.1172/jci.insight.157714
U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. (2004). Toxicological Profile for Ammonia. \n https://www.atsdr.cdc.gov/toxprofiles/tp126.pdf
Uebanso, T., Ohnishi, A., Kitayama, R., Yoshimoto, A., Nakahashi, M., Shimohata, T., ... & Takahashi, A. (2017). Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients, 9(6), 560. https://doi.org/10.3390/nu9060560
UK Health Security Agency, Guidance - Ammonia: toxicological overview. \n https://www.gov.uk/government/publications/ammonia-properties-incident-management-and-toxicology/ammonia-toxicological-overview#ref
Vally, Hassan and Neil LA Misso. “Adverse reactions to the sulphite additives” Gastroenterology and hepatology from bed to bench vol. 5,1 (2012): 16-23.
Van den Eeden et al., 1994. Aspartame ingestion and headaches : a randomized crossover trial. Neurology. 44. 1787-93. 10.1212/WNL.44.10.1787. https://pubmed.ncbi.nlm.nih.gov/7936222/
Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary Emulsifier-Induced Low-Grade Inflammation Promotes Colon Carcinogenesis. Cancer Res. 2017 Jan 1;77(1):27-40. doi: 10.1158/0008-5472.CAN-16-1359. Epub 2016 Nov 7. PMID: 27821485; PMCID: PMC5214513. https://pubmed.ncbi.nlm.nih.gov/27821485/
Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010; 328:228–31. https://pubmed.ncbi.nlm.nih.gov/20203013/
Vin, K., Connolly, A., McCaffrey, T., McKevitt, A., O’Mahony, C., Prieto, M., Volatier, J. L. Estimation of the dietary intake of 13 priority additives in France, Italy, the UK and Ireland as part of the FACET project. Food Additives & Contaminants: Part A, 30(12), 2050–2080. https://doi.org/10.1080/19440049.2013.851417
Vivekanandhi J, Devi CPA, Jayaraman K and Raghavan L, Effect of Erythrosine on testicular function in mice. Toxicology International 13, 119-125\n https://www.semanticscholar.org/paper/Effect-of-erythrosine-on-testicular-function-of-Vivekanandhi-Devi/cd2abac87224e365c3c5a7349081b0f45d714169
VKM (2013). Risk assessment of the exposure to aluminium through food and the use of cosmetic products in the Norwegian population. https://vkm.no/download/18.175083d415c86c573b59c179/1501678206406/a729a67e65.pdf
Voltolini, S., Pellegrini, S., Contatore, M., Bignardi, D., & Minale, P. (2014). New risks from ancient food dyes: cochineal red allergy. European annals of allergy and clinical immunology, 46(6), 232-233.
Vorhees CV. A Test of Dietary Monosodium Glutamate Developmental Neurotoxicity in Rats: A Reappraisal. Ann Nutr Metab. 2018;73 Suppl 5:36-42. doi: 10.1159/000494781. Epub 2018 Dec 3. PMID: 30508817. https://karger.com/anm/article-pdf/73/Suppl.%205/36/2230690/000494781.pdf
Walker V., Ammonia metabolism and hyperammonemic disorders. Adv Clin Chem. 2014;67:73-150. Epub 2014 Nov 4. PMID: 25735860\n https://pubmed.ncbi.nlm.nih.gov/25735860/
Walton JR. Chronic aluminum intake causes Alzheimer's disease: applying Sir Austin Bradford Hill's causality criteria. J Alzheimers Dis. 2014;40(4):765-838.
Wang, W., Nettleton, J. E., Gänzle, M. G., & Reimer, R. A. (2022). A metagenomics investigation of intergenerational effects of non-nutritive sweeteners on gut microbiome. Frontiers in nutrition, 1236. https://colab.ws/articles/10.3389%2Ffnut.2021.795848
Wang, Z., Klipfell, E., Bennett, B. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011). https://doi.org/10.1038/nature09922
Wang, Z., Zhu, C., Nambi, V., Morrison, A. C., Folsom, A. R., Ballantyne, C. M., Boerwinkle, E., & Yu, B. (2019). Metabolomic pattern predicts incident coro-nary heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(7), 1475–148 https://pubmed.ncbi.nlm.nih.gov/31092011/
Wang, Z.; Wei, X.; Yang, J.; Suo, J.; Chen, J.; Liu, X.; Zhao, X. Chronic Exposure to Aluminum and Risk of Alzheimer’s Disease: A Meta-Analysis. Neurosci. Lett. 2016, 610, 200–206. https://pubmed.ncbi.nlm.nih.gov/26592479/
Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol. 2013 Jan;3(1):201-20.\n https://pubmed.ncbi.nlm.nih.gov/23720285/
Weiner ML, Salminen WF, Larson PR, Barter RA, Kranetz JL, Simon GS. Toxicological review of inorganic phosphates. Food Chem Toxicol. 2001 Aug;39(8):759-86 https://pubmed.ncbi.nlm.nih.gov/11434984/
Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012 Feb 21;46(4):2242-50. doi: 10.1021/es204168d. Epub 2012 Feb 8. PMID: 22260395; PMCID: PMC3288463. https://pubmed.ncbi.nlm.nih.gov/22260395/
Whelan, K., Bancil, A. S., Lindsay, J. O., & Chassaing, B. (2024). Ultra-processed foods and food additives in gut health and disease. In Nature Reviews Gastroenterology and Hepatology (Vol. 21, Issue 6, pp. 406–427). Nature Research. https://doi.org/10.1038/s41575-024-00893-5
WHO, 1995. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) - Forty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. https://iris.who.int/bitstream/handle/10665/37246/WHO_TRS_859.pdf?sequence=1
WHO, 1999. Safety evaluation of certain food additives. WHO Food Addit. Ser. no. 42.\n https://www.inchem.org/documents/jecfa/jecmono/v042je26.htm
WHO, 2011. JECFA - OMS/FAO (2011). Seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. https://iris.who.int/bitstream/handle/10665/44788/WHO_TRS_966_eng.pdf?sequence=1#page=18
WHO, 2014. Evaluation of certain food additives - Seventy-ninth report of the Joint FAO/WHO Expert Committee on Food Additives.\n https://iris.who.int/bitstream/handle/10665/150883/9789241209908_eng.pdf?sequence=1#page=26
WHO, 2018. Replace: a programme of action to eliminate industrially produced trans fats from the global food supply. https://www.who.int/news/item/14-05-2018-who-plan-to-eliminate-industrially-produced-trans-fatty-acids-from-global-food-supply
WHO, 2020. Safety evaluation of certain food additives: prepared by the eighty-sixth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva: World Health Organization and Food and Agriculture Organization of the United Nations; 2020 (WHO Food Additives Series, No. 77). Licence: CC BY-NC-SA 3.0 IGO.\n https://www.who.int/publications/i/item/9789240004580
WHO, 2022. Health effects of the use of non-sugar sweeteners: a systematic review and meta-analysis. https://www.who.int/publications/i/item/9789240046429
WHO, 2023. Evaluation of certain food additives. Ninety-sixth report of the Joint FAO/WHO Expert Committee on Food Additives. https://iris.who.int/bitstream/handle/10665/376279/9789240083059-eng.pdf
WHO, 2023. Ninety-sixth report of the Joint FAO/WHO Expert Committee on Food Additives. https://iris.who.int/bitstream/handle/10665/376279/9789240083059-eng.pdf?sequence=1
WHO, 2023. Use of non-sugar sweeteners WHO guideline https://iris.who.int/bitstream/handle/10665/367660/9789240073616-eng.pdf?sequence=1
Witkowski M, Nemet I, Alamri H, Wilcox J, Gupta N, Nimer N, Haghikia A, Li XS, Wu Y, Saha PP, Demuth I, König M, Steinhagen-Thiessen E, Cajka T, Fiehn O, Landmesser U, Tang WHW, Hazen SL. The artificial sweetener erythritol and cardiovascular event risk. Nat Med. 2023 Feb 27.
Wopara I, Modo EU, Mobisson SK, Olusegun GA, Umoren EB, Orji BO, Mounmbegna PE, Ujunwa SO. Synthetic Food dyes cause testicular damage via up-regulation of pro-inflammatory cytokines and down-regulation of FSH-R and TESK-1 gene expression. https://pubmed.ncbi.nlm.nih.gov/33565293/
Wu L, Xu Y, Lv X, Chang X, Ma X, Tian X, Shi X, Li X, Kong X. Impacts of an azo food dye tartrazine uptake on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in crucian carp (Carassius auratus). Ecotoxicol Environ Saf. 2021 Oct 15;223:112551. doi: 10.1016/j.ecoenv.2021.112551. Epub 2021 Aug 3. PMID: 34358931. https://pubmed.ncbi.nlm.nih.gov/34358931/
Wu, H. T., Lin, C. H., Pai, H. L., Chen, Y. C., Cheng, K. P., Kuo, H. Y., ... & Ou, H. Y. (2022). Sucralose, a Non-nutritive Artificial Sweetener Exacerbates High Fat Diet-Induced Hepatic Steatosis Through Taste Receptor Type 1 Member 3. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.823723
Wüthrich B, Kägi MK and Stücker W, 1997. Anaphylactic reactions to ingested Carmine (E120). Allergy, 52, 1133–1137.
Yan, J., Wang, D., Li, K., Chen, Q., Lai, W., Tian, L., ... & Xi, Z. (2020). Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. Environmental Toxicology and Pharmacology, 80, 103485.
Yang X, Song W, Liu N, Sun Z, Liu R, Liu QS, Zhou Q, Jiang G (2017). Synthetic Phenolic Antioxidants Cause Perturbation in Steroidogenesis in Vitro and in Vivo. Environ Sci Technol. 2018 Jan 16;52(2):850-858. doi: 10.1021/acs.est.7b05057. Epub 2017 Dec 28. PMID: 29236469. https://pubmed.ncbi.nlm.nih.gov/29236469/
Yang, Y. et al. Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ Sci Technol 48, 6391–6400 (2014). https://pubmed.ncbi.nlm.nih.gov/24754874/
Yasmina M. Abd-Elhakim, Mohamed M.M. Hashem, Khaled Abo-EL-Sooud, Haytham A. Ali, Abeer Anwar, Abeer E. El-Metwally, Essam A. Mahmoud, Gihan G. Moustafa, Involvement of tumor necrosis factor-α, interferon gamma-γ, and interleukins 1β, 6, and 10 in immunosuppression due to long-term exposure to five common food preservatives in rats, Gene, Volume 742 (2020) https://doi.org/10.1016/j.gene.2020.144590
Yilmaz S, Ünal F, Yüzbaşıoğlu D, Çelik M. DNA damage in human lymphocytes exposed to four food additives in vitro. Toxicology and Industrial Health. 2014;30(10):926-937. doi:10.1177/0748233712466132 https://pubmed.ncbi.nlm.nih.gov/23188648/
Yongxiu Hao, Yuanyuan Wang, Liying Yan, Xiaofei Xu, Da Chen, Yue Zhao, and Jie Qiao. Synthetic Phenolic Antioxidants and Their Metabolites in Follicular Fluid and Association with Diminished Ovarian Reserve: A Case–Control Study. Environmental Health Perspectives. Volume 131, Issue 6. https://ehp.niehs.nih.gov/doi/full/10.1289/EHP11309#abstract
Yoriko Heianza, Qi Sun, Xuan Wang, Saumya Tiwari, Jeramie D Watrous, Kathryn M Rexrode, Mona Alotaibi, Mohit Jain, Samia Mora, Walter C Willett, Lu Qi, JoAnn E Manson, Plasma levels of polyols erythritol, mannitol, and sorbitol and incident coronary heart disease among women, European Journal of Preventive Cardiology, 2024;, zwae288.\n https://doi.org/10.1093/eurjpc/zwae288
Yoshida T, Yoshioka Y, Takahashi H, et al. Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res Lett. 2014;9(1):532.
Yu et al., 2010. Pharmacokinetic/pharmacodynamic modelling of 2-acetyl-4 (5)-tetrahydroxybutyl imidazole-induced peripheral lymphocyte sequestration through increasing lymphoid sphingosine 1-phosphate. Xenobiotica, 40(5), 350-356.
Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf. 2019 Jul;18(4):1111-1134. doi: 10.1111/1541-4337.12448. Epub 2019 May 8. Erratum in: Compr Rev Food Sci Food Saf. 2020 Jul;19(4):2330. https://pmc.ncbi.nlm.nih.gov/articles/PMC6952072/#ABS1
Zani, F., Blagih, J., Gruber, T. et al (2023). The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature 615, 705–711. https://doi.org/10.1038/s41586-023-05801-6
Zeghib K, Boutlelis DA. Food Additive (Sodium benzoate)-induced Damage on Renal Function and Glomerular Cells in Rats; Modulating Effect of Aqueous Extract of Atriplex halimus L. Iran J Pharm Res. (2021) (1):296-306. https://doi.org/:10.22037/ijpr.2020.111634.13272
Zeghib K, Boutlelis DA. Food Additive (Sodium benzoate)-induced Damage on Renal Function and Glomerular Cells in Rats; Modulating Effect of Aqueous Extract of Atriplex halimus L. Iran J Pharm Res. (2021) (1):296-306. https://pubmed.ncbi.nlm.nih.gov/34400959/
Zhang, M., Chen, J., Yang, M., Qian, C., Liu, Y., Qi, Y., ... & Ma, J. (2021). Low Doses of Sucralose Alter Fecal Microbiota in High-Fat Diet-Induced Obese Rats. Frontiers in nutrition, 8. https://doi.org/10.3389/fnut.2021.787055
Zheng, Z., Xiao, Y., Ma, L., Lyu, W., Peng, H., Wang, X., ... & Li, J. (2022). Low Dose of Sucralose Alter Gut Microbiome in Mice. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.848392